This paper introduces DataFrame Question Answering (QA), a novel task that utilizes natural language processing (NLP) models to generate Pandas queries for information retrieval and data analysis on dataframes, emphasizing safe and non-revealing data handling. Specifically, our method, leveraging a large language model (LLM), which solely relies on dataframe column names, not only ensures data privacy but also significantly reduces the context window in the prompt, streamlining information processing and addressing major challenges in LLM-based data analysis.
We propose DataFrame QA (Ye et al., 2024) as a comprehensive framework that includes safe Pandas query generation and code execution. Various LLMs are evaluated on the renowned WikiSQL dataset and our newly developed UCI-DataFrameQA, tailored for complex data analysis queries. Our findings indicate that GPT-4 performs well on both datasets, underscoring its capability in securely retrieving and aggregating dataframe values and conducting sophisticated data analyses. This approach, deployable in a zero-shot manner without prior training or adjustments, proves to be highly adaptable and secure for diverse applications.
Figure 1. Framework of DataFrame QA. Note that, LLM in the figure can be replaced with any fine-tuned NLP model trained for the DataFrame QA task.
References
2024
-
DataFrame QA: A Universal LLM Framework on DataFrame Question Answering Without Data Exposure
Junyi Ye, Mengnan Du, and Guiling Wang
In The 16th Asian Conference on Machine Learning (Conference Track), 2024
This paper introduces DataFrame Question Answering (QA), a novel task that utilizes natural language processing (NLP) models to generate Pandas queries for information retrieval and data analysis on dataframes, emphasizing safe and non-revealing data handling. Specifically, our method, leveraging a large language model (LLM), which solely relies on dataframe column names, not only ensures data privacy but also significantly reduces the context window in the prompt, streamlining information processing and addressing major challenges in LLM-based data analysis. We propose DataFrame QA as a comprehensive framework that includes safe Pandas query generation and code execution. Various LLMs are evaluated on the renowned WikiSQL dataset and our newly developed UCI-DataFrameQA, tailored for complex data analysis queries. Our findings indicate that GPT-4 performs well on both datasets, underscoring its capability in securely retrieving and aggregating dataframe values and conducting sophisticated data analyses. This approach, deployable in a zero-shot manner without prior training or adjustments, proves to be highly adaptable and secure for diverse applications.