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Abstract—As an essential US economic indicator, the S&P500
Index is used to assess the current state of market perfor-
mance and gauge the economy’s future course. However, stock
market index prediction is challenging due to its nonlinearity
and inherently volatile character. Recurrent Neural Networks
(RNN) and their variants are de facto standards for sequence
modeling. Recently, Convolutional Neural Networks (CNN) and
attention-based networks, such as dilated casual convolutions
and Transformers, have also become popular in time series
forecasting. In this paper, we report on the design of a Time-
Series Mixer (TS-Mixer) architecture based on MLP-Mixer, an
all-MLP architecture for time series forecasting. To the best
of our knowledge, this is the first implementation of MLP-
Mixer-based architecture for sequence modeling. Modern deep
learning models are increasingly built to handle univariate
time series data. They generally pay attention to analyzing
temporal dependencies while ignoring the relationship among
features. The proposed architecture is specifically created for
multivariate time series forecasting to capture temporal feature
interactions while simultaneously learning feature correlations.
To accomplish this, the proposed Time-Feature Mixer contains
two types of MLP layers: feature mixer and temporal mixer.
The feature mixer is applied independently to each data point to
capture the correlation among features. In contrast, the temporal
mixer extracts temporal dependency (trend, seasonal, cyclical, or
random characteristics) of each feature across the whole input
sequence. Compared to prevalent neural networks in sequence
modeling, TS-Mixer exhibits competitive performance regarding
S&P500 Index prediction.

Index Terms—stock market prediction, time series forecasting,
neural networks, multi-layer perceptron, MLP-Mixer

I. INTRODUCTION

Stock market prediction, an interdisciplinary study on fi-
nance and data science, has become one of the most popular
Fintech applications [1] [2]. The Standard and Poor’s 500
(S&P500) is an essential benchmark for evaluating current
market performance and forecasting the economy’s direction.
It includes the 500 leading companies and covers approxi-
mately 70% of the available stock market capitalization in the

United States. Therefore, it is commonly used as a proxy to
reflect the stock market’s performance.

Many researchers aim to analyze the stock market and
build effective prediction models for stock market forecasting.
The stock market analysis has two basic categories: funda-
mental analysis and technical analysis. Fundamental analysis
evaluates the stock price based on its intrinsic value. While
technical analysis relies on charts and pattern recognition [3].
Recent trends point to a significant increase in the usage of
experience-based technical indicators as customized features
for deep neural networks and data-driven machine learning
models, drawing considerable interest from both academia and
the financial sector.

Much of the existing work for stock market prediction using
deep learning focuses on developing complex deep learning
models. Some comprise intricate structures, such as gating
mechanisms, attention mechanisms, and convolutional layers
with temporal designs. Though effective, these complex ap-
proaches take much training time to meaningfully investigate
temporal and intercorrelation patterns, which require extensive
computing resources and are inefficient during real-world
deployment. Our work aims to design a simple model that does
not rely on any form of costly complex attention mechanism,
gates, or convolution operation, yet performs competitively
compared to existing models. It is capable of fully exploring
multi-dimensional dynamics between temporal and feature
relationships.

Thus, we propose an all-multi-layer perceptron (All-
MLP) architecture, MLP-Mixer-based deep learning model for
S&P500 index forecasting, named Time-Series Mixer (TS-
Mixer). To the best of our knowledge, this is the first attempt
at an MLP-Mixer-based design for sequence modeling. The
central architecture of the TS-Mixer is inspired by MLP-Mixer
[4], a competitive but conceptually and technically simple
alternative that does not use gating structure, convolutions,
or self-attention. MLPs in TS-Mixer are repeatedly applied to
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either per-location features or temporal features, which can be
considered a novel method to capture temporal correlations.
Like MLP-Mixers, TS-Mixer relies only on basic matrix
multiplication routines, changes to data layout (reshapes and
transpositions), and scalar nonlinearities. The experiments on
SPX in a high-volatility period demonstrate that our proposed
TS-Mixer outperforms multiple benchmarks, including tradi-
tional indicators, RNN-based models, and popular time-series
models. The major contributions are summarized as follows:

• We produced an MLP-Mixer-based model for time-series
stock prediction. The model is based exclusively on
multi-layer perceptrons or MLPs to learn the patterns in
stock index data.

• Our proposed model can learn not only temporal relation-
ships but also inter-feature relationships. To accomplish
this, we use two types of layers: first, is an all MLP layer
which is applied independently to each data point within
a single sub-sequence as well as their features; second, is
also an all MLP layer applied to different subsequences
within the whole input sequence.

• By using this approach, our model can learn the relation-
ships between features and the temporal dependency of
each feature across the whole input sequence.

• We also highlight that, even though the test dataset is very
challenging since it covers the period between 2019 and
2020 (global slowdown due to covid pandemic) and has
an entirely different pattern to the training and validation
dataset, our model is still able to perform competitively
compared to existing baselines in time-series framework.

The remainder of the paper is organized as follows: Sec-
tion II summarizes existing work in stock market prediction;
Section III formulates our stock price prediction problem;
Section IV presents the proposed framework in detail; Section
V evaluates our proposed model, compares it with baselines
regarding prediction performance, and exhibits the hyper-
parameter analysis. The paper concludes with Section VI
discussing future directions.

II. LITERATURE REVIEW

Stock market forecasting is regarded as a crucial under-
taking that requires careful consideration since, with the
right choices, a successful forecast could result in attractive
returns. Stock market forecasting has drawn interest from
economists and computer scientists as a classic yet challeng-
ing topic. The data’s nonlinear, noisy, and chaotic character
makes stock market prediction a significantly challenging task.
Popular technical analysis includes, but is not limited to,
Moving Average (MA), Bollinger Bands, and Moving Av-
erage Convergence/Divergence (MACD). Linear models such
as Autoregressive Integrated Moving Average (ARIMA) [5]
and Generalized Autoregressive Conditional Heteroskedastic-
ity (GARCH) [6] also show powerful predictive ability on
pricing.

Machine learning and artificial intelligence have recently
attracted much interest [7]–[10] for their extraordinary abil-
ity to learn nonlinear relationships and handle massive vol-

umes of data, especially Long short-term memory (LSTM)
and Gated Recurrent Unit (GRU). They have been widely
used to model temporal dependency on stock prices. Qin et
al. [11] used Dual-Stage Attention-Based Recurrent Neural
Network (DARNN) for time-series based stock prediction
tasks. DARNN is a two-stage architecture that uses attention
mechanisms to capture relevant information in the input time-
series data. The two-stage attention mechanism in DARNN
allows the network to focus selectively on different aspects
of the input data, which is particularly useful for time-series
prediction tasks. Feng et al. [12] proposed a novel approach
AdvLSTM to enhance the prediction accuracy of the stock
movement by leveraging adversarial training. They include
a novel adversarial training framework that consists of two
modules: a generator network and a discriminator network.
The generator network takes as input a sequence of historical
stock prices and outputs the predicted stock price movements
for the next day. The discriminator network is trained to
differentiate between the predicted movements produced by
the generator network and the actual movements. Moreover,
additional emerging works apply other types of deep learning
models for stock market prediction. Wang et al. [13] proposed
a novel Hierarchical Adaptive Temporal-Relational Network
(HATR) which employed Temporal Convolutional Network
(TCN) to capture multi-scale dynamic patterns by stacking
dilated causal convolutions and gating paths. Zhou et al. [14]
applied an N-BEATS deep learning technique to the stock
market. N-BEATS based on backward and forward residual
links and a deep stack of fully connected layers achieves state-
of-the-art performance on a wide range of time-series datasets
[15].

Using historical data to predict stock market performance
is one approach. There have been efforts to use other types
of extrinsic data, such as textual data from Twitter and Red-
dit, macroeconomics indicators, and fundamental sector and
company data to augment stock price prediction performance.
Swathi et al. [16] used a deep learning-based LSTM model
for stock price prediction using Twitter sentiment analysis.
The model considers the sentiment of tweets related to a
company or industry and the historical stock prices to predict
future stock prices. According to the authors, their model can
outperform the existing models in terms of prediction accuracy
and reliability. Wang et al. [17] incorporated macroeconomics
factors in learning macro-micro interactions. They introduced
deep learning into the copula to model the coupling and
influence between macro-level factors and micro-level stock
prices.

III. PROBLEM FORMULATION

In this section, we present the problem statement. The gen-
eral time-series forecasting problem is described as follows.
Given an input sequence x0, ..., xT−1, the goal is to predict the
corresponding outputs yT , ..., yT+K−1. Here T is the period of
observation and K is the period of prediction. Input sequence
length T is a tuning hyper-parameter and K is determined by
the need of the forecasting task. To predict the output yt at
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time t, we are constrained to use previously observed inputs
x0, ..., xt−1 only. Formally, a time-series forecasting model is
a function f mapping from x0, ..., xT−1 to yT , ..., yT+K−1:

yT , ..., yT+K−1 = f(x0, ..., xT−1) (1)

Generally, time-series prediction can be formulated into the
following types of forecasting tasks:

1) One-Step-Ahead Time-Series Forecasting: One-step-
ahead forecasting is described as:

ŷt = f(xt−k, ...xt−1, yt−k, ..., yt−1) (2)

where ŷt is the model forecast, k is the look-back window.
2) Multi-step-ahead time-series forecasting: Multi-step-

ahead forecasting is described as:

ŷt+1, ...ŷt+K = f(xt−T+1, ...xt, yt−T+1, ..., yt) (3)

3) Univariate Forecasting: Univariate forecasting involves
the analysis of a single feature without taking into account the
effect of the other features. The underlying assumption for this
formulation is that the impact of other features is embodied
or reflected by the target feature [18]:

ŷt+1, ...ŷt+K = f(yt−T+1, ..., yt) (4)

4) Multivariate Forecasting: Multivariate forecasting anal-
ysis involves multiple features across time which assume they
are independent:

ŷt+1, ...ŷt+K = f(xt−T+1, ...xt, yt−T+1, ..., yt) (5)

IV. TS-MIXER ARCHITECTURE

The basic structure of TS-Mixer is similar to the design of
MLP-Mixer. Figure 1 (top-left) depicts the macro-structure of
TS-Mixer. TS-Mixer is an All-MLP architecture containing
a per-sub-sequence fully-connected layer, several TS-Mixer
blocks, a global average pooling layer, and a classifier or
regression head based on downstream tasks. Other components
include skip connections and dropout. Compared to MLP-
Mixer, layer normalization is not used in TS-Mixer based on
the evaluation results of our experiments.

Firstly, the input sequence is divided into several non-
overlapping sub-sequences with the same shape (<sub-
sequence length, number of features>). A per-sub-sequence
fully-connected layer linearly projects each sub-sequence into
a 1D vector with fixed length dmodel, which allows TS-Mixer
to be compatible with time-series inputs with arbitrary feature
size. These vectors can be seen as patches in images or tokens
in sentences. After the linear projection, the input sequence
is converted into a 2D vector with the shape of (<number
of sub-sequences, dmodel >), and the dimensionality of the
input is unchanged throughout the TS-Mixer blocks. TS-Mixer
blocks are designed for capturing both long-term and short-
term temporal patterns from original input sequences.

A. TS-Mixer Blocks

Like MLP-Mixer, TS-Mixer blocks use two types of MLP
blocks: MLP1 blocks and MLP2 blocks, shown in Figure 1
(right). We name them long-term temporal mixers and short-
term temporal mixers, respectively. Both MLP1 block and
MLP2 block consist of two fully-connected layers and a
Gaussian Error Linear Unit (GELU) [19] nonlinear activation
is illustrated in Figure 1 (bottom-left). GELU is a high-
performing neural network activation function. The GELU
assigns weights for input by their percentile, different from
ReLU, which multiplies the input by 1 or 0 based on their
sign. GELU can be considered a smoother ReLU [19].

The short-term temporal mixer (i.e., MLP2) allows com-
munication among data points within a single sub-sequence
and their features. It repeatedly operates on each sub-
sequence independently, capturing short-term temporal de-
pendency within individual sub-sequence. The parameters in
the short-term temporal mixer can be seen as the short-term
memory of TS-Mixer that focuses on learning the relationship
of local data points without considering the whole input
sequence. Note that the parameter size in the short-term feature
mixer is only determined by dmodel, which is a tuning hyper-
parameter and is independent of the input sequence length.

The long-term temporal mixer (i.e., MLP1) allows com-
munication between different sub-sequences/tokens and cap-
tures temporal dependencies across the whole input sequence.
It repeatedly operates on each feature independently and
extracts long-term temporal dependency within the individual
feature. The parameters in the long-term temporal mixer can
be seen as the long-term memory of TS-Mixer that is expected
to automatically capture the global patterns (i.e., seasonal,
trend, cyclical, and random characteristics) of an individual
feature across the whole input sequence. For instance, the
overall trend of the US stock market has kept increasing in the
most recent 20 years. These two types of temporal mixers are
interleaved to enable interaction of both short-term temporal
and long-term temporal features, serving as an All-MLP multi-
scaled temporal model without elaborate designs or complex
computation units such as gate structures, convolutions, and
attention layers.

We have designed three different TS-Mixer blocks with
different orders of temporal mixers, as illustrated on the right
side of Fig. 1.

1) Mixer block uses the same design as Mixer block
from MLP-Mixer [4]. It has a short-term temporal mixer
followed by a long-term temporal mixer.

2) MixerReverse block is the variant by reversing the or-
der of short-term temporal mixer and long-term temporal
mixer in Mixer block.

3) MixerParallel block is a variant that sums the input
and the output from both short-term temporal mixer and
long-term temporal mixer. Skip-connections are utilized
in all three TS-Mixer blocks to help increase the depth
of neural networks and ensure feature reusability.

In the extreme case, such as when the length of the sub-
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Fig. 1. The Architecture of TS-Mixer. The macro-structure of TS-Mixer (top-left). The illustration of MLP1 and MLP2 blocks (bottom-left). Three types of
Mixer block design (right). 1⃝ Mixer block (the same Mixer block in MLP-Mixer); 2⃝ MixerReverse block; 3⃝ MixerParallel block.

sequence equals one, the TS-Mixer architecture is equivalent
to using 1 × 1 convolutions for feature mixing and single-
channel depth-wise convolutions of a full receptive field and
parameter sharing for temporal mixing. In other words, the
short-term temporal mixer (MLP2) is simplified as a pure fea-
ture mixer without involving any temporal factors. In contrast,
the long-term temporal mixer (MLP1) extracts both local and
global temporal dependencies at the same time. Compared to
CNN, the MLP blocks do not require additional costly matrix
multiplication. After removing the layer normalization from
the original MLP-Mixer architecture, the outputs of the short-
term temporal mixer and long-term temporal mixer can be
rewritten as

U∗,i = X∗,i +W2σ(W1X∗,i), i = 1, ..., C,

Yj,∗ = Uj,∗ +W4σ(W3Uj,∗), j = 1, ..., S.
(6)

where σ is an element-wise nonlinearity GELU. W1,2,3,4 are
MLP weights. S and C are tunable hidden widths in the
MLP2 and MLP1, respectively. Note that C is independent
of the sequence size and the overall complexity is linear in
the number of elements in the sequence.

V. MODEL EVALUATION

A. Dataset Description

In this section, we describe the data source, selected fea-
tures, and data pre-processing techniques. Our dataset consists

of three components: S&P 500 Index, Dollar Index(DXY), and
CBOE Volatility Index (VIX).

1) S&P500 Index (SPX) is considered an essential bench-
mark index for the U.S. stock market. It is a market-
capitalization weighted index that is composed of the
top 500 companies with the largest market capitalization
(i.e., the total value of all a company’s shares of stock)
in the U.S. Predicting values of S&P500 Index is crucial
because it gives investors and government officials a
broad view of the economic health of the U.S. in the
future. Our S&P500 Index dataset contains historical
daily Opening, High, Low, and Closing prices, and
Volume.

2) U.S. dollar Index (DXY) is a measure of the dollar’s
value against a basket of six world currencies. It reflects
the dollar’s value in global markets. The DXY dataset
contains daily Opening, High, Low, and Closing prices.

3) CBOE Volatility Index (VIX) is an index that repre-
sents the maker’s expectations for the relative strength
of near-term price changes of the S&P500 Index. VIX
is often used as a method to measure market senti-
ment (i.e., the degree of fear) among market partici-
pants. Our dataset contains daily High/Closing value and
Low/Closing value of VIX.

All these features are publicly available on Yahoo Finance
[20]. Except for US holidays, it has the daily data five days a
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TABLE I
TRAIN, VALIDATION, TEST SETS SUMMARY

Start Date End Date # of Samples

Train 2000-01-03 2016-10-19 4422

Validate 2016-10-20 2018-11-23 523

Test 2018-11-26 2020-12-30 523

week for 20 years.
The time span of our dataset is a total of 20 years, from 2000

to 2020, which encompasses US business cycle expansions and
contractions. We split it into a train set (80%), a validation set
(10%), and a test set (10%) across time. The detailed date
range and the number of samples are illustrated in Table I.
The validation set determines the best model during training
for each hyper-parameter setting.

Fig. 2. SPX Dataset Chart (2000-2020).

Data normalization and data standardization are used before
training the neural networks. Each feature and the target is
rescaled into the range [−1, 1] with the following equation.

xnormalized =
2(x−min(xtrain))

(max(xtrain)−min(xtrain))
− 1 (7)

where min(xtrain) and max(xtrain) are the maximum and
minimum of feature x in the training set.

The dataset is segmented into sequences of five continuous
trading days (i.e., weekly sequences). In other words, we
predict the S&P500 Index value with data from the prior week.

B. Baseline Models

We conducted experiments on the following baseline mod-
els, including traditional technical analysis (SMA, EMA),
RNN-related models (RNN, LSTM, GRU), and popular time-
series methods (TCN, N-BEATS).

1) Simple Moving Average (SMA): Simple Moving Average
calculates the average of a sequence of the selected range.
The equation is illustrated below, where n is the number of
samples in the sequence. For instance, SMA(5) forecasts the
6th variable with the average of the previous five variables.
SMA(1) takes the latest value as the prediction.

x̂i = SMAi(n) =
xi−n + xi−n+1 + ...+ xi−1

n
(8)

2) Exponential Moving Average (EMA): The major dif-
ference between SMA and EMA is that EMA assigns large
weights to recent values, while SMA assigns equal weights
to all values. Both SMA and EMA are techniques to smooth
the fluctuations from sequence data. Compared with SMA,
EMA is the preferred average among traders since it is more
reactive to the most recent value than SMA. SMA and EMA
are univariate methods that assume the future stock price can
be forecasted with the historical stock prices.

EMAi(n) =
2× xi−1

1 + n
+ EMAi−1(n)× (1− 2

1 + n
) (9)

where the smoothing number n typically equals 2.
3) Recurrent Neural Network (RNN): Recurrent Neural

Networks, also known as RNNs, are a class of neural networks
designed for time-series data. In contrast to MLPs, RNNs cap-
ture the correlation between data points and require memory
to store the hidden state of previous inputs. The hidden states
are calculated as follows:

ht = tanh(Wihxt + bih +Whhht−1 + bhh) (10)

where tanh is a nonlinear activation function. W s and bs are
weights and biases. For each value in the input sequence,
each RNN layer computes the hidden states ht at time t.
xt is the input at time t, and ht−1 is the hidden state of
the previous RNN layer at time t − 1. RNN has several
advantages. (1) It can process inputs of any length. (2) The
model size is independent of the input sequence length. (3)
The computation considers historical information. (4) Weights
in RNN are shared across time. However, RNN trains very
slowly due to its chained computation graph and suffers from
gradient vanishing and exploding problems [21], making it
unsuitable for long sequence input. For each value in the input
sequence, each RNN layer computes the hidden states ht at
time t. xt is the input at time t, and ht−1 is the hidden state
of the previous RNN layer at time t− 1.

4) Long Short-Term Memory (LSTM): Long Short-Term
Memory (LSTM) addresses the vanishing gradient problem
in RNNs. An LSTM unit has three gates (input gate, forget
gate, and output gate) and a cell structure. The cell remembers
values over arbitrary time intervals, and three gates control the
information flow into and out of the cell.

it = δ(Wiixt + bii +Whiht−1 + bhi)

ft = δ(Wifxt + bif +Whfht−1 + bhf )

gt = tanh(Wigxt + big +Whght−1 + bhg)

ot = δ(Wioxt + bio +Whoht−1 + bho)

ct = ft ⊙ ct−1 + it ⊙ gt

ht = ot ⊙ tanh(ct)

(11)

5) Gated Recurrent Unit (GRU): Kyunghyun et al. [22]
introduced Gated Recurrent Unit (GRU) in 2014. It includes
only two gate structures, update gate and reset gate in vanilla
RNN. Compared with LSTM, GRU has fewer parameters and
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lacks the cell unit. GRU exhibits better performance on small
datasets [23].

rt = δ(Wirxt + bir +Whrht−1 + bhr)

zt = δ(Wizxt + biz +Whzht−1 + bhz)

nt = tanh(Winxt + bin + rt(Whnht−1 + bhn))

ht = (1− zt)nt + ztht−1

(12)

6) Temporal Convolutional Network (TCN): Temporal
Convolutional Network (TCN) describes a family of generic
convolutional architectures for sequence modeling [24]. It con-
sists of residual connections and dilated causal convolutions
layers. The dilated causal convolution is a special case of a
one-dimensional fully connected layer. The dilation convolu-
tion operation employs a filter f to slide over sequential inputs
x at time step t by skipping values with a certain dilation rate
as follows:

x⊛ ft =

k−1∑
s=0

fs · x(t− d× s) (13)

where d is the dilation rate to control the skipping step. When
d = 1, it is equivalent to the one-dimensional convolution
layer; as the dilation rate grows exponentially, the dilated
convolution can receive a wider and deeper range of historical
information. This scheme prevents information leakage from
the future to the past. Compared with RNN-based models,
TCN exhibits competitive performance in a large range of
sequence modeling tasks [24] and allows parallel computation
to improve efficiency.

7) N-BEATS: N-BEATS [15] is one of the state-of-the-
art time-series deep learning models originally designed for
solving univariate times-series forecasting problems. The basic
building block of N-BEATs is fully-connected layers that do
not use any memory units or gate structures like RNNs. It
consists of a very deep stack of blocks that include stacks
of fully-connected layers as well as backward and forward
residual links. Each block has two outputs, backcast and
forecast, where the forecast is the extracted features for the
downstream task, i.e., the time-series forecasting and backcast
refers to the best estimation of the input sequence. The
architecture has two variants, (1) the generic architecture that
substitutes the polynomial and harmonic basis for the identity
basis. (2) the interpretable architecture, which projects the
time series into polynomials and harmonic basis to learn trend
and seasonality features. We use the generic configuration of
N-BEATS as our baseline as it does not require any time-
series-specific knowledge. More specifically, the backcast x̂l

and forecast ŷl output of l-th block in generic architecture is
defined as follows.

x̂l = V l
b θ

l
b + blb, ŷl = V l

fθ
l
f + blf (14)

where V is the learned basis by the model, θ is the expansion
coefficient for V and b is the bias. N-BEATS demonstrates
state-of-the-art performance for two configurations on several
well-known datasets, improving forecast accuracy by 11%

TABLE II
HYPER-PARAMETER SUMMARY

Hyper-Parameter Range of Values

Input Features {S&P500, S&P500+DXY+VIX}

Data Normalization {mean&variance, [0, 1], [-1, 1]}

Type of Mixer Blocks {Mixer, MixerReverse, MixerParallel}

# of Mixer Blocks {1, 2, 3, 4}

dmodel {32, 64, 128, 256}

Positional Encoding {with, without}

Dropout {0.1, 0.2, 0.3, 0.4}

TABLE III
PERFORMANCE EVALUATION

Model MAE RMSE

SMA(2) 29.835 45.718

SMA(3) 34.147 51.267

SMA(5) 41.914 61.542

SMA(10) 55.998 81.681

EMA(2) 29.249 45.586

EMA(3) 31.811 48.722

EMA(5) 37.752 56.207

EMA(10) 50.654 73.789

RNN 63.089 77.627

LSTM 35.989 49.940

GRU 71.410 85.220

N-BEATS 28.101 44.429

TCN 28.398 44.911

TS-Mixer 28.014 44.330

TS-Mixer-Reverse 28.427 44.230

TS-Mixer-Parallel 28.235 44.685
1 The numbers next to SMA and EMA indicate the number of samples in

the sequence, e.g., SMA(2) is calculated simple average price of the
previous two days.

over a statistical benchmark and by 3% over the winner, a
hybrid model of RNN and Holt-Winters exponential smooth-
ing of the M4 forecast competition.

C. Hyper-Parameter Tuning

TS-Mixer is implemented in PyTorch. The hyper-parameters
are tuned based on the validation set. The details of hyperpa-
rameters for the training process are shown in Table II.

D. Evaluation Metric

Root Mean Square Error (RMSE) and Mean Absolute Error
(MAE) are used to evaluate time-series forecasting models. All
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Fig. 3. Comparison of the actual closing price and predicted closing price from TS-Mixer during the testing period

Fig. 4. Influence of Hyper-parameter on Performance.

metrics produce the average model prediction errors, which
means lower values are better.

1) Root Mean Square Error (RMSE): RMSE is the standard
deviation of the residuals (prediction errors). Residuals are a
measure of how far from the regression line data points are;
RMSE is a measure of how to spread out these residuals. In
other words, it conveys how concentrated the data is around
the line of best fit.

RMSE =

√√√√ 1

N

N∑
i=1

(ŷi − yi)2 (15)

where N is the total number of test samples.
2) Mean Absolute Error (MAE): MAE measures the aver-

age magnitude of the errors in a set of predictions without
considering their direction. It is the average over the test
samples of the absolute differences between prediction and
actual observation where all individual differences have equal
weight.

MAE =
1

N

N∑
i=1

|ŷi − yi| (16)

Since RMSE is squared before averaging, it gives a rela-
tively high weight to large errors compared to MAE.

E. Comparison with baselines

Table III presents the numerical performance. Figure 3
shows the comparison of prediction and actual prices from
TS-Mixer on SPX during the testing period. We make the
following observations:

1) TS-Mixer and its variants achieve the best performance
regarding both metrics. Compared with baselines, TS-
Mixer outperforms EMA(2) among traditional indicators
by 1.2 of MAE, and surpasses N-BEATS in neural
networks by 0.9 of MAE. It validates the superior
performance of the alternate MLP structure of TS-Mixer.

2) MAs based on the previous two or three days gener-
ally outperform the RNN-based model. N-BEATS and
TCN, however, are competitive in spotting complicated
dynamic patterns in the stock market because of their
deep learning model structures and effective memory
usage.

3) From Figure 3 we can observe that the predicted closing
price from TS-Mixer is highly aligned with the actual
target values. Even though the test data contains signifi-
cantly different patterns from the training data, it is clear
that the proposed model can learn the pertinent patterns
and trends in the training data and perform well on the
test data.
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4) As opposed to the alternatives, the Mixer design, which
consists of a long-term temporal mixer followed by a
short-term temporal mixer, is more suitable for the price
prediction task for SPX.

F. Hyper-Parameter Analysis
We further explore how our proposed model structure of

TS-Mixer influences performance. Figure 4 shows the impact
of various hyper-parameter values on MAE for TS-Mixer and
its variants. As shown in the above figure, MAE initially
decreases as the hidden dimension grows because TS-Mixer
can capture more useful information. However, as the hidden
dimension continues to increase, MAE begins to rise, possibly
due to overly complex neural networks leading to overfitting.
The middle figure exhibits a similar trend. With an increasing
number of blocks, the ability of TS-Mixer-Reverse to capture
both relevant temporal and feature representation, respectively,
is enhanced at first, while subsequently weakened due to over-
fitting. The right figure demonstrates an increasing dropout rate
effectively regularizes the model complexity, thereby boosting
the performance of TS-Mixer-Parallel regarding MAE.

VI. CONCLUSION AND FUTURE WORK

The S&P500 Index is a determinate US economic indicator,
allowing us to evaluate the current market performance and
forecast the direction of the economy. However, due to the
nonlinearity and volatile nature of the stock market, index
prediction is a challenging task. RNN and its variants are the
de facto standards for sequence modeling. Recently, CNN and
attention-based networks, such as 1D CNNs and Transformers,
have also become popular in time-series analysis. In this paper,
we report on the design of an MLP-Mixer-based architecture
named Time-Series Mixer (TS-Mixer), an all-MLP architec-
ture for time-series forecasting. Our literature review indicates
that this is the first time that MLP-Mixer-based architecture
is utilized to sequence modeling. TS-Mixer contains two
types of layers: long-term and short-term temporal mixer.
One with MLPs applies independently to each sub-sequence
(i.e., captures temporal patterns in short-term period), and the
other with MLPs applied across the whole input sequence
(i.e., extracts long-term trend, seasonal, cyclical, or random
characteristics). Extensive experiments on SPX in a high-
volatility period validate that TS-Mixer exhibits competitive
performance in predicting S&P500 Index, surpassing other
popular time-series frameworks.

REFERENCES

[1] S. R. Das, “The future of fintech,” Financial Management, vol. 48, no. 4,
pp. 981–1007, 2019.

[2] T. Paul, “Fintech empowers prediction of stock market index using
artificial neural network,” in 2021 International Conference on Artificial
Intelligence and Computer Science Technology (ICAICST), 2021, pp.
42–46.

[3] W. Jiang, “Applications of deep learning in stock market prediction:
recent progress,” Expert Systems with Applications, vol. 184, p. 115537,
2021.

[4] I. O. Tolstikhin, N. Houlsby, A. Kolesnikov, L. Beyer, X. Zhai, T. Un-
terthiner, J. Yung, A. Steiner, D. Keysers, J. Uszkoreit et al., “Mlp-mixer:
An all-mlp architecture for vision,” Advances in Neural Information
Processing Systems, vol. 34, 2021.

[5] R. J. Hyndman and G. Athanasopoulos, Forecasting: principles and
practice. OTexts, 2018.

[6] T. Bollerslev, “Generalized autoregressive conditional heteroskedastic-
ity,” Journal of econometrics, vol. 31, no. 3, pp. 307–327, 1986.

[7] R. Aguilar-Rivera, M. Valenzuela-Rendón, and J. Rodrı́guez-
Ortiz, “Genetic algorithms and darwinian approaches in financial
applications: A survey,” Expert Systems with Applications,
vol. 42, no. 21, pp. 7684–7697, 2015. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0957417415003954

[8] Q. Ding, S. Wu, H. Sun, J. Guo, and J. Guo, “Hierarchical
multi-scale gaussian transformer for stock movement prediction,”
in Proceedings of the Twenty-Ninth International Joint Conference
on Artificial Intelligence, IJCAI-20, C. Bessiere, Ed. International
Joint Conferences on Artificial Intelligence Organization, 7 2020, pp.
4640–4646, special Track on AI in FinTech. [Online]. Available:
https://doi.org/10.24963/ijcai.2020/640

[9] Y. Duan, L. Wang, Q. Zhang, and J. Li, “Factorvae: A probabilistic
dynamic factor model based on variational autoencoder for predicting
cross-sectional stock returns,” in Thirty-Sixth AAAI Conference
on Artificial Intelligence, AAAI 2022, Thirty-Fourth Conference
on Innovative Applications of Artificial Intelligence, IAAI 2022,
The Twelveth Symposium on Educational Advances in Artificial
Intelligence, EAAI 2022 Virtual Event, February 22 - March 1,
2022. AAAI Press, 2022, pp. 4468–4476. [Online]. Available:
https://ojs.aaai.org/index.php/AAAI/article/view/20369

[10] J. Gu, F. P. Deek, and G. Wang, “Stock broad-index trend patterns
learning via domain knowledge informed generative network,” arXiv
preprint arXiv:2302.14164, 2023.

[11] Y. Qin, D. Song, H. Chen, W. Cheng, G. Jiang, and G. W. Cottrell,
“A dual-stage attention-based recurrent neural network for time series
prediction,” CoRR, vol. abs/1704.02971, 2017. [Online]. Available:
http://arxiv.org/abs/1704.02971

[12] F. Feng, H. Chen, X. He, J. Ding, M. Sun, and T.-S. Chua, “Enhancing
stock movement prediction with adversarial training,” 2018. [Online].
Available: https://arxiv.org/abs/1810.09936

[13] H. Wang, S. Li, T. Wang, and J. Zheng, “Hierarchical adaptive temporal-
relational modeling for stock trend prediction.” in IJCAI, 2021, pp.
3691–3698.

[14] Q. Zhou, H. Liu, W. Li, T. Mo, and B. Wu, “Bilateral autotrading
framework for stock prediction,” in 2021 International Joint Conference
on Neural Networks (IJCNN). IEEE, 2021, pp. 1–8.

[15] B. N. Oreshkin, D. Carpov, N. Chapados, and Y. Bengio, “N-beats:
Neural basis expansion analysis for interpretable time series forecasting,”
arXiv preprint arXiv:1905.10437, 2019.

[16] T. Swathi, N. Kasiviswanath, and A. A. Rao, “An optimal deep
learning-based lstm for stock price prediction using twitter sentiment
analysis,” Applied Intelligence, vol. 52, no. 12, p. 13675–13688, sep
2022. [Online]. Available: https://doi.org/10.1007/s10489-022-03175-2

[17] G. Wang, L. Cao, H. Zhao, Q. Liu, and E. Chen, “Coupling macro-
sector-micro financial indicators for learning stock representations with
less uncertainty,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 35, no. 5, 2021, pp. 4418–4426.

[18] I. A. Moosa, “Univariate time series techniques,” in Exchange rate
forecasting: Techniques and applications. Springer, 2000, pp. 62–97.

[19] D. Hendrycks and K. Gimpel, “Gaussian error linear units (gelus),” arXiv
preprint arXiv:1606.08415, 2016.

[20] “Yahoo Finance kernel description,” https://finance.yahoo.com/, ac-
cessed: 2022-02-10.

[21] R. Pascanu, T. Mikolov, and Y. Bengio, “On the difficulty of training
recurrent neural networks,” in International conference on machine
learning. PMLR, 2013, pp. 1310–1318.
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