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ABSTRACT We look into Generative Adversarial Network (GAN), its prevalent variants and applications in
a number of sectors. GANs combine two neural networks that compete against one another using zero-sum
game theory, allowing them to create much crisper and discrete outputs. GANs can be used to perform
image processing, video generation and prediction, among other computer vision applications. GANs can
also be utilised for a variety of science-related activities, including protein engineering, astronomical data
processing, remote sensing image dehazing, and crystal structure synthesis. Other notable fields whereGANs
have made gains include finance, marketing, fashion design, sports, and music. Therefore in this article we
provide a comprehensive overview of the applications of GANs in awide variety of disciplines.We first cover
the theory supporting GAN, GAN variants, and the metrics to evaluate GANs. Then we present how GAN
and its variants can be applied in twelve domains, ranging from STEMfields, such as astronomy and biology,
to business fields, such as marketing and finance, and to arts, such as music. As a result, researchers from
other fields may grasp how GANs work and apply them to their own study. To the best of our knowledge,
this article provides the most comprehensive survey of GAN’s applications in different field.

INDEX TERMS Deep learning, generative adversarial networks, computer vision, time series, applications.

I. INTRODUCTION
Generative Adversarial Networks [1] or GANs belong to the
family of Generative models [2]. Generative Models try to
learn a probability density function from a training set and
then generate new samples that are drawn from the same
distribution. GANs generate new synthetic data that resem-
bles real data by pitting two neural networks (the Generator
and the Discriminator) against each other. The Generator
tries to capture the true data distribution for generating new
samples. The Discriminator, on the other hand, is usually a
Binary classifier that tries to discern between actual and fake
generated samples as precisely as possible.

The associate editor coordinating the review of this manuscript and

approving it for publication was Gustavo Olague .

Over the last few years, GANs have made substantial
progress. Due to hardware advances, we can now train deeper
and more sophisticated Generator and Discriminator neural
network architectures with increased model capacity. GANs
have a number of distinct advantages over other types of
generative models. Unlike Boltzmann machines [3], GANs
do not require Monte Carlo approximations in order to train,
and GANs use back-propagation and do not require Markov
chains.

GANs have gained a lot of traction in recent years and have
been widely employed in a variety of disciplines, with the list
of fields in which GANs can be used fast expanding. GANs
can be used for data generation and augmentation([4], [5]),
image to image translation([6], [7]), image super resolution
([8], [9]) to name a few. Figure 1. shows some of the most
widely used GAN applications. It is this versatile nature, that
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FIGURE 1. Common Uses of GANs in various applications. From left to right: Face generation [10], Image enhancement or super resolution [11], Image
Colorization [6], Style transfer [6], sketch to photo [6], image inpainting [12].

has allowed GANs to be applied in completely non-aligned
domains such as medicine and astronomy.

There have been a few surveys and reviews about GANs
due to their tremendous popularity and importance. However,
the majority of past papers have concentrated on two distinct
aspects: first, describing GANs and their growth over time,
and second, discussing GANs’ use in image processing and
computer vision applications( [13], [14], [15], [16], [17]).
As a consequence, the focus has been less on describing
GAN applications in a wide range of disciplines. Therefore,
we’ll present a comprehensive review of GANs in this
first-of-its-kind article. We’ll look at GANs and some of
the most widely used GAN models and variants, as well
as a number of evaluation metrics, GAN applications in
a variety of 12 areas (including image and video related
tasks, medical and healthcare, biology, astronomy, remote
sensing, material science, finance, marketing, fashion, sports
andmusic), GAN challenges and limitations, and GAN future
directions. Figure 2 shows the overall content presented in the
paper.

Some of the major contributions of the paper are
highlighted below:

• Describe the wide range of GAN applications in engi-
neering, science, social science, business, art, music and
sports. As far as we know, this is the first review paper to
cover GAN applications in such diverse domains. This
review will assist researchers of various backgrounds in
comprehending the operation of GANs and discovering
about their wide array of applications.

• Evaluation of GANs include both qualitative and quan-
titative methods. This survey provides a comprehensive
presentation of quantitative metrics that are used to
evaluate the performance of GANs in both computer
vision and time series data analysis. We include
evaluation metrics for GANs’ application in time series
data which are not discussed in other GAN survey paper.
To the best of our knowledge, this is the first survey

paper to present time series data evaluation metrics for
GANs.

We have organized the rest of the article as follows:
Section II presents the basic working of GANs, and the
most commonly used GAN variants and their descriptions.
Section III summarises some of the frequently used GAN
evaluation metrics. Section IV describes the extensive range
of applications of GANs in awide variety of domains.We also
provide a table at the end of each subsection summarizing
the application area and the corresponding GAN models
used. Section V discusses some of the difficulties and
challenges that are encountered during the training of GANs.
Apart from this we present a short summary concerning the
future direction of GAN development. Section VI provides
concluding remarks.

II. GAN, GAN VARIANTS AND EXTENSIONS
In this section we describe about GANs, the most common
GAN models and extensions. Following a description of
GAN theory, we go over twelve GAN variants that serve as
foundations or building blocks for many other GAN models.
There are a lot of articles on GANs, and a lot of them have
named-GANs, which are models that have a specific name
that usually contains the word ‘‘GAN’’. We’ve focused on
twelve specific GAN variants. The reader will obtain a better
knowledge of the core aspects of GANs by reading through
these twelve GAN variants, which will help them navigate
other GAN models.

A. GAN BASICS
Generative Adversarial Networks were developed by Ian
Goodfellow et al. [1] in the year 2014. GANs belong
to the class of Generative models [2]. GANs are based
on the min-max, zero-sum game theory. For this, GANs
consists of two neural networks: one is the Generator and
the other is the Discriminator. The goal of the Generator
is to learn to generate fake sample distribution to deceive
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FIGURE 2. GAN variants, application domains and evaluation metrics presented in the paper.

the Discriminator whereas the goal of the Discriminator is
to learn to distinguish between real and fake distribution
generated by the Generator.

1) NETWORK ARCHITECTURE AND LEARNING
The general architecture of GAN which is comprised of the
Generator and the Discriminator is shown in Figure 3.
The Generator (G) takes in as input some random noise
vector Z and then tries to generate an image using this
noise vector indicated as G(z). The generated image is
then passed to the Discriminator and based on the output
of the Discriminator the parameters of the Generator are
updated. The Discriminator (D) is a binary classifier which
simultaneously takes a look at both real and fake samples
generated by the Generator and ties to decide which ones are
real and which ones are fake. That is for a sample image X
the Discriminator models the probability of the image being
fake or real. The probabilities are then passed back to the
Generator as feedback.

Over time each of the Generator and the Discriminator
model tries to one up each other by competing against
each other this where the term ‘‘adversarial’’ of Generative

Adversarial Networks comes from and the optimization
is based on the minimax game problem. During training
both the Generator’s and Discriminator’s parameters are
updated using back propagation with the ultimate goal of the
Generator is to be able to generate realistic looking images
and the Discriminator to get progressively better at detecting
generated fake images from real ones.

GANs use the Minimax loss function which was intro-
duced by Goodfellow et al. when they introduced GANs for
the first time. The Generator tries to minimize the following
function while the Discriminator tries to maximize it. The
Minimax loss is given as,

MinGMaxD f (D,G) = Ex[log(D(x))]

+ Ez[log(1 − D(G(z)))]. (1)

Here, Ex is the expected value over all real data samples,
D(x) is the probability estimate of the Discriminator if x
is real, G(z) is the output of the Generator for a given
random noise vector z as input,D(G(z)) is the Discriminator’s
probability estimate if the fake generated sample is real,
Ez is the expected value over all random inputs to the
Generator.
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FIGURE 3. Basic GAN architecture.

FIGURE 4. cGAN architecture [18].

B. CONDITIONAL GENERATIVE ADVERSARIAL NETS
(cGAN)
Conditional Generative Adversarial Nets [18] or cGANs are
an extension of GANs for conditional sample generation.
This gives control over the modes of data being generated.
cGANs use some extra information y, such as class labels or
other modalities, to perform conditioning by concatenating
this extra information y with the input and feeding it into
both the Generator G and the Discriminator D. The Minimax
objective function can be modified as shown below,

min
G

max
D

f (D,G)

= Ex[log(D(x|y))] + Ez[log(1 − D(G(z|y)))] (2)

C. WASSERSTEIN GAN (WGAN)
The authors of WGAN [19] introduced a new algorithm
which gave an alternative to traditional GAN training. They
showed that their new algorithm improved the stability of

model learning and prevent problems such as mode collapse.
For the critique model, WGAN uses weight clipping, which
ensures that weight values (model parameters) stay within
pre-defined ranges. The authors found that Jensen-Shannon
divergence is not ideal for measuring the distance of
the distribution of the disjoint parts. Therefore they used
the Wasserstein distance which uses the concept of Earth
mover’s(EM) distance instead to measure the distance
between the generated and the real data distribution and
while training the model tries to maintain One-Lipschitz
continuity [20].
The EM or Wasserstein distance for the real data distribu-

tion Pr and the generated data distribution Pg is given as

W (Pr ,Pg) = infγ ε5(Pr ,Pg)E(x,y)∼r [∥x − y∥] (3)

where 5(Pr ,Pg) denotes the set of all joint distributions
γ (x, y) whosemarginals are respectivelyPr andPg. However,
the equation for theWasserstein distance is highly intractable.
Therefore the authors used the Kantorovich-Rubinstein
duality to approximate the Wasserstein distance as

maxwεωEx∼Pr [fw(x)] − Ez∼p(z)[fw(G(z))] (4)

where (fw)wεω represents a parameterized family of functions
that are all K-Lipschitz for some K. The Discriminator
D’s goal is to optimize this parameterized function which
represents the approximated Wasserstein distance. The goal
of the Generator G is to miminize the above Wasserstein
distance equation such that the generated data distribution
is as close as possible to the real distribution. The overall
WGAN objective function is given as

minGmaxwεωEx∼Pr [fw(x)] − Ez∼p(z)[fw(G(z))] (5)

or

minGmaxDEx∼Pr [fw(x)] − Ez∼p(z)[fw(G(z))] (6)

Even though WGAN improved training stability and allevi-
ated problems such as mode collapse however enforcing the
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Lipschitz constraint is a challenging task. WGAN-GP [20]
proposes an alternative to clipping weights by using gradient
penalty to penalize the norm of gradient of the critic with
respect to its input.

D. UNSUPERVISED REPRESENTATION LEARNING WITH
DEEP CONVOLUTIONAL GENERATIVE ADVERSARIAL
NETWORKS (DCGANs)
Radford et al. [5] introduced the deep convolutional genera-
tive adversarial networks or DCGANs. As the name suggests
DCGANs use deep convolutional neural networks for both
the Generator and Discriminator models. The original GAN
architecture used only multi-layer perceptrons or MLPs but
since CNNs are better at images than MLP, the authors of
DCGAN used CNN in the Generator G and Discriminator
D neural network architecture. Thre key features of the
DCGANs neural network architecture are: (a) First, for the
Generator, convolutions are replaced with transposed convo-
lutions, so the representation at each layer of the Generator
is successively larger, as it maps from a low-dimensional
latent vector onto a high-dimensional image. Replacing any
pooling layers with strided convolutions (Discriminator)
and fractional-strided convolutions (Generator). (b) Second,
use batch normalization in both the Generator and the
Discriminator. (c) Third, use ReLU activation in Generator
for all layers except for the output, which uses Tanh. Use
LeakyReLU activation in the Discriminator for all layers.
(d) Fourth, use the Adam optimizer instead of SGD with
momentum. All of these modifications rendered DCGAN to
achieve stable training. DCGAN was important because the
authors demonstrated that by enforcing certain constraints we
can develop complex high quality Generators. The authors
also made several other modifications to the vanilla GAN
architecture.

E. PROGRESSIVE GROWING OF GANs FOR IMPROVED
QUALITY, STABILITY, AND VARIATION (ProGAN)
Karras et al. [4] introduced a new training methodology for
training GANs to generate high resolution images. The idea
behind ProGAN is to be able to synthesize high resolution and
high quality images via the incremental (gradual) growing
of the Discriminator and the Generator networks during the
training process. ProGAN makes it easier for the Generator
to generate higher resolution images by gradually training
it from lower resolution images to those higher resolution
images. That is in a progressive GAN, the Generator’s first
layers produce very low-resolution images, and subsequent
layers add details. Training is considerably stabilised by the
progressive learning process.

F. INTERPRETABLE REPRESENTATION LEARNING BY
INFORMATION MAXIMIZING GENERATIVE ADVERSARIAL
NETS (InfoGAN)
The key motivation behind InfoGAN [21] is to enable GANs
to learn disentangled representations and have control over
the properties or features of the generated images in an

unsupervised manner. To do this instead of using just a
noize vector z as input the authors decompose the noise
vector into two parts first being the traditional noise vector z
and second as new ‘‘latent code vector’’ c. This code has
a predictable effect on the output images. The objective
function for InfoGAN [21] is given as,

MinGMaxDf1(D,G) = f (D,G) − λI (c;G(z, c)) (7)

where λ is the regularization parameter, I (c;G(z, c)) is
the mutual information between the latent code c and the
Generator output G(z, c). The idea is to maximize the mutual
information between the latent code and theGenerator output.
This encourages the latent code c to contain as much as
possible, important and relevant features of the real data
distributions. However it is not practical to calculate the
mutual information I (c;G(z, c)) explicitly as it requires the
posterior P(c|x), therefore a lower bound for I (c;G(z, c)) is
approximated. This can be achieved by defining an auxiliary
distributionQ(c|x) to approximateP(c|x). Thus the final form
of the objective function is then given by this lower-bound
approximation to the Mutual Information:

MinGMaxDf1(D,G) = f (D,G) − λL1(c;Q) (8)

where L1(c;Q) is the lower bound for I (c;G(z, c)). If we
compare the above equation to the original GAN objective
function we realize that this framework is implemented by
merely adding a regularization term to the original GAN’s
objective function.

G. StackGAN: TEXT TO PHOTO-REALISTIC IMAGE
SYNTHESIS WITH STACKED GENERATIVE ADVERSARIAL
NETWORKS (StackGAN)
StackGAN [22], takes in as input a text description and
then synthesizes high quality images using the given text
description. The authors proposed StackGAN to generate
256×256 photo-realistic images based on text descriptions.
To generate photo-realistic images StackGAN uses a sketch-
refinement process, StackGAN decomposes the difficult
problem into more manageable sub-problems by using
Stacked Generative Adversarial Networks. The Stage-I GAN
creates Stage-I low-resolution images by sketching the
object’s primitive shape and colours based on the given text
description. The Stage-II GAN generates high-resolution
images with photo-realistic details using Stage-I results and
text descriptions as inputs.

To be able to do this, StackGAN architecture consists
of the following components: (a) Input variable length
text description is converted into a fixed length vector
embedding. (b) Conditioning Augmentation. (c) Stage I
Generator: Generates (128 × 128) images (d) Stage I
Discriminator (e) Stage II Generator: Generates (256 × 256)
images. (f) Stage II Discriminator. The variable length text
description is first converted to a vector embedding which
is non-linearly transformed to generate conditioning latent
variables as the input of the Generator. Filling the latent
space of the embedding with randomly generated fillers
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FIGURE 5. DCGAN generator architecture [5].

FIGURE 6. ProGAN architecture [4].

is a trick used in the paper to make the data manifold
more continuous and thus more conducive to later training.
They also add the Kullback-Leibler divergence of the input
Gaussian distribution and the Gaussian distribution as a
regularisation term to theGenerator’s training output, tomake
the data manifold more continuous and training-friendly.

The Stage I GAN uses the following objective function:

LD0 = E(I0,t)∼pdata
[
logD0 (I0, φt)

]
+ Ez∼pz,t∼pdata

[
log

(
1 − D0

(
G0

(
z, ĉ0

)
, φt

))]
(9)

LG0 = Ez∼pz,t∼pdata[
log

(
1 − D0

(
G9

(
z, ĉ0

)
, φt

))]

+ λDKL (N (µ0(φt ), 60(φt )) ∥N (0, I )) (10)

The Stage II GAN uses the following objective function:

LD = E(I ,t)∼pdata
[
logD(I , φt )

]
+ Es0∼pG0 ,t∼pdata

[
log

(
1 − D(G(s0, ĉ), φt )

)]
(11)

LG = Es0∼pG0 ,t∼pdata
[
log

(
1 − D(G(s0, ĉ), φt )

)]
+ λDKL (N (µ(φt ), 6(φt ))∥N (0, I )) (12)

where φt is the text embedding of the given description,
pz is Gaussian distribution, ĉ0 is sampled from a Gaussian
distribution from which φt is drawn. s0 = G0(z, ĉ0) and
λ = 1.
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FIGURE 7. StackGAN architecture [22].

H. IMAGE-TO-IMAGE TRANSLATION WITH CONDITIONAL
ADVERSARIAL NETWORKS (PIX2PIX)
pix2pix [6] is a conditional generative adversarial net-
work(cGAN [18]) for solving general purpose image-to-
image translation problems. TheGAN consists of a Generator
which has a U-Net [23] architecture and the Discriminator
is a PatchGAN [6] classifier. The pix2pix model not only
learns the mapping from input to output image, but also
constructs a loss function to train this mapping. Interestingly,
unlike regular GANs, there is no random noise vector input
to the pix2pix Generator. Instead, the Generator learns a
mapping from the input image x to the output image G(x).
The objective or the loss function for the Discriminator is
the traditional adversarial loss function. The Generator on the
other hand is trained using the adversarial loss along with
the L1 or pixel distance loss between the generated image and
the real or target image. The L1 loss encourages the generated
image for a particular input to remain as similar as possible
to the corresponding output real or ground truth image. This
leads to faster convergence and more stable training. The loss
function for conditional GAN is given by

LcGAN (G,D) = Ex,y[logD(x, y)]

+ Ex,z[log(1 − D(x,G(x, z)))] (13)

The L1 or pixel distance loss is given by

LL1(G) = Ex,y,z [∥y− G(x, z)∥1] (14)

The final loss function is given by

argmin
G

max
D
LcGAN (G,D) + λLL1(G) (15)

where λ is the weighting hyper-parameter coefficient.
Pix2PixHD [24] is an improved version of the Pix2Pix
algorithm. The primary goal of Pix2PixHD is to produce
high-resolution images and perform semantic manipulation.

To do this the authors introduced multi-scale Generators
and Discriminators and combined the cGANs and feature
matching loss function. The training set consists of pairs of
corresponding images (si, xi, where si is a semantic label
map and xi is a corresponding natural image. The cGAN loss
function is given by,

E(s,x)[logD(s, x)] + Es[log(1 − D(s,G(s))] (16)

The ith-layer feature extractor of Discriminator Dk as
Dk (i)(from input to the ith layer of Dk ). The feature matching
loss LFM (G,Dk ) is given by

LFM(G,Dk ) = E(s,x)

T∑
i=1

1
Ni[∥∥∥D(i)

k (s, x) − D(i)
k (s,G(s))

∥∥∥
1

]
(17)

where T is the total number of layers and Ni denotes the
number of elements in each layer. The objective function of
pix2pixHD is given by

min
G

 max
D1,D2,D3

∑
k=1,2,3

LGAN(G,Dk )


+ λ

∑
k=1,2,3

LFM(G,Dk ) (18)

I. UNPAIRED IMAGE-TO-IMAGE TRANSLATION USING
CYCLE-CONSISTENT ADVERSARIAL
NETWORKS(CycleGAN)
One fatal flaw of pix2pix is that it requires paired images
for training and thus cannot be used for unpaired data which
do not have input and output pairs. CycleGAN [7] addresses
the issue by introducing a cycle consistency loss that tries to
preserve the original image after a cycle of translation and
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FIGURE 8. Using pix2pix to map edges to color images [6]. D, the
Discriminator, learns to distinguish between fake (Generator-generated)
and actual (edge, photo) tuples. G, the Generator, learns how to deceive
the Discriminator. In contrast to an unconditional GAN, the Generator and
Discriminator both look at the input edge map.

reverse translation. Matching pairs of images are no longer
required for training in this formulation. CycleGAN uses two
Generators and two Discriminators. The Generator G is used
to convert images from the X to the Y domain. The Generator
F, on the other hand, converts images from Y to X. (G : X →

Y , F : Y → X ). The Discriminator DY distinguishes y from
G(x) and the Discriminator DX distinguishes x from F(y).
The adversarial loss is applied to both the mapping functions.
For the mapping function G : X → Y and its Discriminator
DY , the objective function is given by

LGAN (G,DY ,X ,Y ) = Ey∼pdata (y)
[
logDY (y)

]
+ Ex∼pdata (x)

[
log (1 − DY (G(x))]

(19)

The authors argued that the adversarial losses alone cannot
guarantee that the learned function can map an individual
input xi to a desired output yi as it leaves the model under-
constrained. The authors therefore used the cycle consistency
loss such that the learned mapping is cycle-consistent. It is
based on the assumption that if you convert an image from
one domain to the other and back again by feeding it through
both Generators in sequence, you should get something
similar to what you put in. Forward cycle consistency is
represented as x → G(x) → F(G(x)) ≈ x and the backward
cycle consistency as y → F(y) → G(F(y)) ≈ y. The cycle
consistency loss is given by

Lcyc (G,F) = Ex∼pdata (x) [∥F(G(x)) − x∥1]

+ Ey∼pdata (y) [∥G(F(y)) − y∥1] (20)

The final full objective is given by

L (G,F,DX ,DY ) = LGAN (G,DY ,X ,Y )

+ LGAN (F,DX ,Y ,X)

+ λLcyc(G,F), (21)

where λ controls the relative importance of the two objectives.

G∗,F∗
= argmin

G,F
max
Dx ,DY

L (G,F,DX ,DY ) (22)

J. A STYLE-BASED GENERATOR ARCHITECTURE FOR
GENERATIVE ADVERSARIAL NETWORKS(StyleGAN)
The primary goal of StyleGAN [10] is to produce high
quality, high resolution facial images that are diverse in nature
and provide control over the style of generated synthetic
images. StyleGAN is an extension of the ProGAN [4]
model which uses the progressive growing approach for
synthesizing high resolution and high quality images via the
incremental (gradual) growing of the Discriminator and the
Generator networks during the training process. It’s important
to note that StyleGAN changes affect only the Generator
network, whichmeans they only affect the generative process.
The Discriminator and loss function, which are both the
same as in a traditional GAN, have not been altered.
The upgraded Generator includes several additions to the
ProGAN’s Generators which are described below:

• Baseline Progressive GAN: The authors use the
Progressive GAN(ProGAN [4]) as their baseline from
which they inherit the network architecture and some of
the hyperparameters.

• Bi-linear up/down sampling:The ProGANmodel used
the nearest neighbor up/down sampling but the authors
of StyleGAN used bi-linear sampling layers for both the
Generator and the Discriminator.

• Mapping Network, Style Network and AdaIN:
Instead of feeding in the noise vector z directly into
the Generator, it goes through a mapping network to
get an intermediate noise vector w, say. The output
of the mapping network (w) is then passed through a
learned affine transformation (A) before passing into
the synthesis network through the Adaptive Instance
Normalization [25] or AdaIN module. In Figure ‘‘A’’
stands for a learned affine transform. The AdaIN
module transfers the encoded information, created by
the Mapping Network after the affine transformation,
which is incorporated into each block of the Generator
model after the convolutional layers. The AdaINmodule
begins by converting the output of the feature map to a
standard Gaussian and then adding the style vector as
a bias term. The mapping network f is a standard deep
neural network which is comprised of 8 fully connected
layers and the synthesis network g consists of 18 layers.

• Remove traditional input: Most models, including
ProGAN, utilize random input to generate the Gener-
ator’s initial image. However, the StyleGAN authors
found that the image features are controlled by w and
the AdaIN. As a result, they simplify the architecture by
eliminating the traditional input layer and begin image
synthesis with a learned constant tensor.

• Add noise inputs: Before evaluating the nonlinear-
ity, Gaussian noise is added after each convolution.
In Figure 7. ‘‘B’’ is the learned scaling factor applied
per channel to the noise input.

• Mixing regularization: The authors also introduced
a novel regularization method to reduce neighbouring
styles correlation and have more fine grained control
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FIGURE 9. CycleGAN [7] (a) two Generator mapping functions G : X → Y and
F : Y → X , and two Discriminators DY and DX . (b) forward cycle-consistency loss:
x → G(x) → F (G(x)) ≈ x and (c) backward cycle consistency loss:
y → F (y ) → G(F (y )) ≈ y .

FIGURE 10. StyleGAN generator [10].

over the generated images. Instead of passing just
one latent vector, z, through the mapping network as
input and getting one vector, w, as output, mixing
regularisation passes two latent vectors, z1 and z2,
through the mapping vector and gets two vectors,w1 and
w2. The use of w1 and w2 is completely randomized for
every iteration this technique prevents the network from
assuming that styles adjacent to each other correlate.

K. RECURRENT GAN (RGAN) AND RECURRENT
CONDITIONAL GAN (RCGAN)
Besides generating synthetic images, GAN can also generate
sequential data [26], [27]. Instead of modeling the data
distribution in the original feature space, the generativemodel
for time-series data also captures the conditional distribution

P(Xt |X1:t−1) given historical data. The main difference in
architecture between Recurrent GAN and the traditional
GAN is that we replace the DNNs/ CNNs with Recurrent
Neural Networks (RNNs) in both Generator and Discrimi-
nator. Here, the RNNs can be any variants of RNN, such as
Long short-term memory (LSTM) and Gated Recurrent Unit
(GRU), which captures the temporal dependency in input
data. In the case of Recurrent Conditional GAN (RCGAN),
both Generator and Discriminator are conditioned on some
auxiliary information. Many experiments [27] show that
RGAN and RCGAN are able to effectively generate realistic
time-series synthetic data.

For RGAN-and-RCGAN, the Generator RNN takes the
random noise at each time step to generate the synthetic
sequence. Then, the Discriminator RNN works as a classifier
to distinguish whether the input is real or fake. Condition
inputs are concatenated to the sequential inputs of both
the Generator and Discriminator if it is an RCGAN.
Similar to GAN, the Discriminator in RGAN minimize the
cross-entropy loss between the generated data and the real
data. The Discriminator loss is formulated as follows.

Dloss(Xn, yn) = −CE(RNND(Xn), yn) (23)

where Xn (Xn ∈ RT×d ) and yn (yn ∈ {1, 0}T ) are the input
and output of the Discriminator with sequence length T and
feature size d . yn is a vector of 1s for real sequence and 0s
for synthetic sequence. CE(·) is the average cross-entropy
function and RNND(·) is the RNN in Discriminator. The
Generator loss is formulated below.

Gloss(Zn) = Dloss(RNNG(Zn), 1)

= −CE(RNND(RNNG(Zn)), 1) (24)

Here, Zn is a random noise vector with Zn ∈ RT×m.
In the case of RCGAN, the inputs of both Generator and
Discriminator also concatenate the conditional information cn
at each time step.

L. TIME-SERIES GAN (TimeGAN)
Recently, a novel GAN framework preserving temporal
dynamics called Time-Series GAN (TimeGAN) [28] is
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FIGURE 11. RGAN and RCGAN [27].

proposed. Besides minimizing the unsupervised adversarial
loss in the traditional GAN learning procedure, (1) TimeGAN
introduces a stepwise supervised loss using the original inputs
as supervision, which explicitly encourages the model to
capture the stepwise conditional distributions in the data.
(2) TimeGAN introduces an autoencoder network to learn
the mapping from feature space and embedding/latent space,
which reduces the dimensionality of the adversarial learning
space. (3) To minimize the supervised loss, jointly training
on both the autoencoder and Generator is deployed, which
forces the model to be conditioned on the embedding to
learn temporal relationship. TimeGAN framework not only
captures the distributions of features in each time step but also
capture the complex temporal dynamics of features across
time.

The TimeGAN consists of four important parts, embedding
function, recovery function, Generator and Discriminator.
First, the autoencoder (first two parts) learns the latent rep-
resentation from the inputs sequence. Then, the adversarial
model (latter two parts) trains jointly on the latent space to
generate the synthetic sequence with temporal dynamics by
minimizing both the unsupervised loss and supervised loss.

III. GAN EVALUATION METRICS
One of the most difficult aspects of GAN training is
assessing their performance, or determining how well a
model approximates a data distribution. In terms of theory
and applications, significant progress has been made, with a
large number of GAN variants now available. However there
has been relatively little effort put into evaluating GANs, and
there are still gaps in quantitative assessment methods. In this
section, we present the relevant and popular metrics which are
used to evaluate the performance of GANs.

1) Inception Score (IS): IS was proposed by Salimans
et al. [29] and it employs the pre-trained Inception-
Net [30] trained on ImageNet [31] to capture the
desired properties of generated samples. The average

Kullback-Leibler or KL divergence [32] between the
conditional label distribution p(y | x) of samples
and the marginal distribution p(y) calculated from all
samples is measured by IS. The goal of IS is to
assess two characteristics for a set of generated images:
image quality (which evaluates whether images have
meaningful objects in them) and image diversity. Thus
IS favors a low entropy of p(y | x) but a high entropy
of p(y). IS can be expressed as:

exp (Ex[KL(p(y | x)∥p(y))]) (25)

A higher IS indicates that the generative model is
capable of producing high-quality samples that are also
diverse.

2) Modified Inception Score (m-IS): In its original
form, Inception Score assigns models that produce
a low entropy class conditional distribution p(y | x)
with a higher score overall generated data. It is,
however, desirable to have diversity within a category
of samples. To characterize this diversity, Guru-
murthy et al. [33] proposed a modified version of
inception-score which incorporates a cross-entropy
style score −p (y | xi) log

(
p

(
y | xj

))
where xjs are

samples of the same class as xi as per the outputs of
the trained inception model. The modified IS can be
defined as,

exp
(
Exi

[
Exj

[(
KL

(
P (y | xi) ∥P

(
y | xj

))]])
(26)

The m-IS is calculated per-class and then averaged
across all classes. m-IS can be thought of as a proxy for
assessing both intra-class sample diversity and sample
quality.

3) Mode Score(MS): The MODE score introduced by
Che et al. [34] is an improved version of the IS that
addresses one of the IS’s major flaws: it ignores the
prior distribution of ground truth labels. In contrast to
IS, MS can measure the difference between the real and
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FIGURE 12. (a) Block Diagram of Four Key Components in TimeGAN. (b) Training scheme: solid lines and dashed lines represent forward
propagation paths and backpropagation paths respectively [28].

TABLE 1. Application of common GAN models.

generated distributions.

exp
(
Ex

[
KL

(
p(y | x)∥p

(
ytrain

))]
−KL

(
p(y)∥p

(
ytrain

)))
(27)

where p
(
ytrain

)
is the empirical distribution of labels

computed from training data. According to the author’s
evaluation, theMODE score successfullymeasures two
important aspects of generative models, namely variety
and visual quality.

4) Frechet Inception Distance (FID): Proposed by
Heusel et al. [35], the Frechet Inception Distance score
determines how far feature vectors calculated for real
and generated images differ. A specific layer of the
InceptionNet [30] model is used by the FID score
to capture and embed features of an input image.
The embeddings are summarized as a multivariate
Gaussian by calculating the mean and covariance for
both the generated data and the real data. The Fréchet
distance (or Wasserstein-2 distance) between these two
Gaussians is then used to quantify the quality of the
generated samples.

FID(r, g) =
∥∥µr − µg

∥∥2
2

+ Tr(6r + 6g − 2(6r6g)
1
2 ) (28)

where
(
µg, 6g

)
and (µr , 6r ) represent the empirical

mean and empirical covariance of the generated and
real data disctibutions respectively. Smaller distances
between synthetic(model generated) and real data
distributions are indicated by a lower FID.

5) Image Quality Measures: Below we describe some
commonly used image quality assessment measures
used to compare GANgenerated data with the real data.
a) Structural similarity index measure (SSIM) [36]

is a method for quantifying the similarity between
two images. SSIM tries to model the perceived
change in the image’s structural information. The
SSIM value varies between -1 and 1, where a
value of 1 shows perfect similarity. Multi-Scale
SSIM or MS-SSIM [37] is a multiscale version
of SSIM that allows for more flexibility in incor-
porating image resolution and viewing conditions
than a single scale approach. MS-SSIM ranges
between 0 (low similarity) and 1 (high similarity).

b) Peak Signal-to-Noise Ratio or PSNR compares
the quality of a generated image to its correspond-
ing real image by measuring the peak signal-
to-noise ratio of two monochromatic images.
For example evaluation of conditional GANs or
cGANs [18] Higher PSNR (in db) indicates better
quality of the generated image.
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c) Sharpness Difference (SD) represents the differ-
ence in clarity between the generated and the real
image. The larger the value is, the smaller the
difference in sharpness between the images is and
the closer the generated image is to the real image.

6) Evaluation Metrics for Time-Series/Sequence
Inputs: To evaluate quality of generating synthetic
sequence data is very challenging. For example, the
Intensive Care Unit (ICU) signal looks completely
random to a non-medical export [27]. The researchers
evaluate the quality of synthetic sequential data mainly
focusing on the following three different aspects.
(1) Diversity – the synthetic data should be generated
from the same distribution of real data. (2) Fidelity –
the synthetic data should be indistinguishable from the
real data. (3) Usability — the synthetic data should be
good enough to be used as the train/test dataset. [28]
a) t-SNE and PCA [28] are both commonly used

visualization tools for analyzing both the original
and synthetic sequence datasets. They flatten the
dataset across the temporal dimension so that
the dataset can be plotted in the 2D plane. They
measure how closely the distribution of gener-
ated samples resembles that of the original in
2-dimensional space.

b) Discriminative Score [28] evaluates how difficult
for a binary classifier to distinguish between the
real (original) dataset and the fake (generated)
dataset. It is challenging for the classifier to
classify if the synthetic data and the original are
drawn from the same distribution.

c) Maximum Mean Discrepancy (MMD) [27], [38]
learns the distribution of the real data. The
maximum mean discrepancy method has been
proposed to distinguishwhether the synthetic data
and the real data are from the same distribution by
computing the squared difference of the statistics
between real and synthetic samples (MMD2). The
unbiased MMD2 can be denoted as following
where the inner production between functions is
replaced with a kernel function K .

M̂MD2 =
1

n(n− 1)

n∑
i=1

n∑
j̸=i

K (xi, xj)

−
2
mn

n∑
i=1

m∑
j=1

K (xi, yj)

+
1

m(m− 1)

m∑
i=1

m∑
j̸=i

K (yi, yj) (29)

A suitable kernel function for the time-series
data is vital. The authors treat the time series
as vectors for comparison and select the radial
basis function (RBF) as the kernel function which
is K (x, y) = exp(− ∥x − y∥2 /(2σ 2)). To select

an appropriate kernel bandwidth σ , the estimator
of the t-statistic of the power of the MMD

test between two distributions t̂ =
M̂MD

2
√

V̂
is

maximised. The authors split a validation set
during training to tune the parameter. The result
shows thatMMD2 is more informative than either
Generator or Discriminator loss, and correlates
well with quality as assessed by visualising [27].

d) Earth Mover Distance (EMD) [39], [40] is a
measure of the distance between two probability
distributions over a region. It describes howmuch
probability mass has to be moved to transform
Ph into Pg where Ph denotes the historical
distribution and Pg is the generated distribution.
The EMD is defined by

EMD(Ph,Pg) = inf
π∈

∏
(Ph,Pg)

E(X ,Y )∼π [∥X − Y∥] (30)

where
∏
(Ph,Pg) denotes the set of all joint prob-

ability distributions with marginals Ph and Pg.
e) AutoCorrelation Function (ACF) Score [39]

describes the coefficient of correlation between
historical and the generated time series. Let r1:T
denote the historical log percentage change series
and {r (1)

1:T̃ ,θ
, . . . , r (M )

1:T̃ ,θ
} a set of generated log

percentage change paths of length T̃ ∈ N . The
autocorrelation is calculated with the time lag tau
and the series r1:T and measures the correlation of
the lagged time series with the series itself

C(τ ; r) = Corr(rt+τ , rt ) (31)

The ACF(f ) score is computed for a function
f : R → R as

ACF(f ) : =∥ C(f (r1:T ))

−
1
M

M∑
i=1

C(f (r (i)1:T ,θ )) ∥2 (32)

where C : RT → [−1, 1]S : r1:T 7→

(C(1; r), . . . ,C(S; r)).
f) Leverage Effect Score [39] provides a comparison

of the historical and the generated time depen-
dence. The leverage effect for lag τ is measured
using the correlation of the lagged, squared
log percentage changes and the log percentage
changes themselves.

ℓ(τ ; r) = Corr(r2t+τ , rt ) (33)

The leverage effect score is defined by

∥ L(r1:T =
1
M

M∑
i=1

L(r (i)
1:T̃ ,θ

)) ∥2 (34)

where L : RT → [−1, 1]S : r1;r 7→

(ℓ(1; r), . . . , ℓ(S; r)).
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TABLE 2. Summary of relevant and popular GAN evaluation metrics.

IV. GAN APPLICATIONS
GANs are by far the most widely used generative models and
they are immensely powerful for the generation of realistic
synthetic data samples. In this section, we will go over
the wide array of domains in which Generative Adversarial
Networks (GANs) are being applied. Specifically, we will
present the use of GANs in Image processing, Video
generation and prediction, Medical and Healthcare, Biology,
Astronomy, Remote Sensing, Material Science, Finance,
Fashion Design, Sports and Music.

A. IMAGE PROCESSING
GANs are quite prolific when it comes to specific image
processing related tasks like image super-resolution, image
editing, high resolution face generation, facial attribute
manipulation to name a few.

• Image super-resolution: Image super-resolution refers
to the process of transforming low resolution images
to high resolution images. SRGAN [8] is the first
image super-resolution framework capable of inferring
photo-realistic natural images for 4x up-scaling factors.
Several other super resolution frameworks( [9], [11])
have also been developed to produce better results. Best-
Buddy GANs [41] developed recently is used for single
image super-resolution (SISR) task along with previous
works( [42], [43]).

• Image editing: Image editing involves removing or
modifying some aspects of an image. For example,
images captured during bad weather or heavy rain lack
visual quality and thus will require manual intervention
to either remove anomalies such as raindrops or dust
particles that reduce image quality. The authors of ID-
CGAN [44] used GANs to address the problem of single
image de-raining. Image modification could involve
modifying or changing some aspects of an image such
as changing the hair color, adding a smile, etc. which
was demonstrated by ( [45], [46]).

• High resolution face image generation: High resolu-
tion facial image generation is one other area of image
processing where GANs have excelled. Face generation
and attribute manipulation using GANs can be broadly

classified into the creation of entire synthetic faces, face
features or attribute manipulation and face component
transformation.
– Synthetic face generation: Synthetic face gen-

eration refers to the creation of synthetic images
of the face of people who do not exist in real
life. ProGAN [4], described in the previous section
demonstrated the generation of realistic looking
images of human faces. Since then there have been
several works which use GANs for facial image
generation( [47], [48]). StyleGAN [49] which is a
unique generative adversarial network introduced
by Nvidia researchers in December 2018. The
primary goal of StyleGAN is to generate high
quality face images that are also diverse in nature.
To achieve this, the authors used techniques such as
using a noise mapping network, adaptive instance
normalization and progressive growing similar to
ProGAN to produce very high resolution images.

– Face features or attribute manipulation: Face
attribute manipulation includes facial pose and
expression transformation. The authors of PosIX-
GAN [50] trained their model to generate high
quality face images with 9 different pose variations
when given a face image in any arbitrary pose as
input. DECGAN [51] authors used Double Encoder
Conditional GAN to perform facial expression
synthesis. Expression Conditional GAN (ECGAN)
[52] can learn the mapping from one image domain
to another and the authors were able to control spe-
cific facial expressions by the conditional attribute
label.

– Face component transformation: Face compo-
nent transformation deals with altering the face
style(hair color and style) or adding accessories
such as eye glasses. The authors of DiscoGAN [53]
were able to change hair color and the authors of
StarGAN [54] were able to perform multi-domain
image translations. BeautyGAN [55] can be used to
translate the makeup style from a given reference
makeup face image to another non-makeup one
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while preserving face identity. The authors of
InfoGAN [21] trained their model to learn disen-
tangled representations in an unsupervised manner
and can modify facial components such as adding
or removing eyeglasses and changing hairstyles.
GANs can also be applied to image inpainting
where the task is of reconstructing missing regions
in an image. In this regard GANs have been used(
[12], [56]) to perform the task.

B. VIDEO GENERATION AND PREDICTION
Synthesizing videos using GANs can be divided into three
main categories.

• Unconditional video generation
• Conditional video generation
• Video prediction

1) UNCONDITIONAL VIDEO GENERATION
For unconditional video generation the output of the GAN
models is not conditioned on any input signals. Due to the
lack of any information provided as a condition with the
videos during the training phase, the output videos produced
by these frameworks typically are low-quality in nature.

The authors of VGAN [57] were the first to apply
GANs for video generation. Their Generator consists of
two CNN networks, one 3D spatio-temporal convolutional
network to capture moving objects in the foreground, and the
other is a 2D spatial convolutional model that captures the
static background. The two independent outputs from the
Generator are combined to create the generated video and
fed to the Discriminator, to decide if it is real or fake.
Temporal Generative Adversarial Nets (TGAN) [58] can
learn representation from an unlabeled video dataset and
generate a new video. TGAN Generator consists of two
sub Generators one of which is the temporal Generator and
the other is the image Generator. The temporal Generator
takes a single latent variable as input and produces a set of
latent variables, each of which corresponds to a video frame.
The image Generator creates a video from a set of latent
variables. The Discriminator consists of three-dimensional
convolutional layers. TGAN uses WGAN to provide stable
training and meets the K-Lipschitz constraint. FTGAN
[59] consists of two GANs: FlowGAN and TextureGAN.
FlowGAN network deals with motion, i.e. adds optical flow
for representing the object motion more effectively. The
TextureGAN model is used to generate the texture that is
conditioned on the previous FlowGAN result, to produce the
required frames.Motion andContent decomposedGenerative
Adversarial Network or MoCoGAN [60] uses a motion and
content decomposed representation for video generation.
MoCoGAN is made up of four sub-networks: a recurrent
neural network, an image Generator, an image Discriminator,
a video Discriminator, and a video Discriminator. Built on
the BigGAN [61] architecture, the Dual Video Discriminator
GAN (DVD-GAN) [62] is a generative video model for high
quality frame generation. DVD-GAN employs Recurrent

Neural Network (RNN) units as well as a dual Discriminator
architecture to deal with the spatial and temporal dimension.

2) CONDITIONAL VIDEO GENERATION
In conditional video generation the output of the GAN
models is conditioned on input signals such as text, audio
or speech. We do not consider other conditioning techniques
such as images to video, semantic map to videos and video
to video as these can be considered to fall under the video
prediction category which is described in section 4.5.2 below.

For text to video synthesis the goal is to generate videos
based on some conditional text. Li et al. [63] used Varia-
tional Autoencoder (VAE) [64] and Generative Adversarial
Network (GAN) for generating videos from text. Their model
is made a conditional gist Generator (conditional VAE),
a video Generator, and a video Discriminator. The initial
image/gist is created by the conditional gist Generator, which
is conditioned on encoded text. This gist serves as a general
representation of the image, background color and object
layout of the desired video. The video’s content and motion
are then generated using cGAN by conditioning both the gist
and the text input. Temporal GANs conditioning on captions
(TGANs-C) [58] uses a Bidirectional LSTM and LSTM
based encoder to embed and obtain the representation of the
input text. This output representation is then concatenated
with a random noise vector and then given to the Generator,
which is a 3D deconvolution network to generate synthesize
realistic videos. The model has three Discriminators: The
video Discriminator distinguishes real video from synthetic
video and aligns video with the correct caption, the frame
Discriminator determines whether each frame is real/fake and
semantically matched/mismatched with the given caption,
and the motion Discriminator exploits temporal coherence
between consecutive frames. Balaji et al. proposed the
Text-Filter conditioning Generative Adversarial Network
(TFGAN) [65]. TFGAN introduces a novel multi-scale text-
conditioning technique in which text features are extracted
from the encoded text and used to create convolution filters.
Then, the convolution filters are input to the Discriminator
network to learn good video-text associations in the GAN
model. StoryGAN [66] is based on a sequential conditional
GAN framework whose task is to generates a sequence of
images for each sentence in a givenmulti-sentence paragraph.
The GAN model consists of (i) Story Encoder, (ii) A
recurrent neural network (RNN) based Context Encoder,
(iii) An image Generator and (iv) An image Discriminator
and a story Discriminator. BoGAN [67] maintains semantic
matching between video and the corresponding language
description at various levels and ensures coherence between
consecutive frames. The authors used LSTM and 3D
convolution based encoder decoder architecture to produce
frames from embedding based on the input text. Region
level semantic alignment module was proposed to encourage
the Generator to take advantage of the semantic alignment
between video and words on a local level. To maintain
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TABLE 3. Applications in image processing.

frame-level and video level coherence two Discriminators
were used. Kim et al. [68] came up with Text-to-Image-
to-Video Generative Adversarial Network (TiVGAN) for
text-based video generation. The key idea is to begin
by learning text-to-single-image generation, then gradually
increase the number of images produced, and repeat until the
desired video length is reached.

Speech to video synthesis involves the task of generating
synchronized video frames conditioned on an audio/speech
input. Jalalifar et al. [69] used LSTM and CGAN for speech
conditioned talking face generation. LSTM network learns
to extract and predict facial landmark positions from audio
features. Given the extracted set of landmarks, the cGAN then
generates synchronized facial images with accurate lip sync.
Vougioukas et al. [70] used GANs for generating videos of a
talking head. The generation of video frames is conditioned
on a still image of a person and an audio clip containing
speech and does not rely on extracting intermediate features.
Their GAN architecture uses an RNN based Generator,
frame level and sequence level Discriminator respectively.
The idea of disentangled representation was explored by
Zhou et al. [71]. The authors proposed the Disentangled
Audio-Visual System (DAVS), which uses disentangled
audio-visual representation to create high-quality talking face
videos.

3) VIDEO PREDICTION
Video prediction is the ability to predict future video frames
based on the context of a sequence of previous frames.
Formally future frame prediction can be defined as follows.
Let Xi ∈ Rw×h×c be the ith frame in the sequence of n video
frames X = (Xi−n, . . . ,Xi−1,Xi), where w, h, and c denote
the width, height and the number of channels respectively.
The goal is to predict the next sequence of frames Y =(
Ŷi+1, Ŷi+2, . . . , Ŷi+m

)
using the input X.

Video prediction is a challenging task due to the complex
task of modelling both the content and motion in videos.
To this extent several studies have been carried out to
perform video prediction using GAN-based training ([72],
[73], [74], [75], [76], [77], [78]). Mathieu et al. [72] used
multi-scale architecture for future frame prediction. The
network was trained using an adversarial training method,
and an image gradient difference loss function. MCNet [73]
performs the task of video frame prediction by disentangling
temporal and spatial dynamics in videos. An Encoder-
Decoder Convolutional Neural Network is used to model

video content and Convolutional-LSTM is used to model
temporal dynamics or motion in the video. In this way
predicting the next frame is as simple as converting the
extracted content features into the next frame content using
the recognized motion features.

FutureGAN [74] used an encoder-decoder based GAN
model to predict future frames of the video sequence.
Their network comprises of Spatio-temporal 3D convolution
network(3D ConvNets) [79] for all encoder and decoder
modules to capture both the spatial and temporal components
of a video sequence. To have stable training and prevent
problems of mode collapse the authors used Wasserstein
GAN with gradient penalty (WGAN-GP) [20] loss and the
technique of progressively growing GAN or ProGAN [4]
which has been shown to generate high resolution images.
VPGAN [75] is a GAN-based framework for stochastic
video prediction. The authors introduce a new adversarial
inference model, an action control conformal mapping
network and use cycle consistency loss for their model. The
authors also combined image segmentation models with their
GAN framework for robust and accurate frame prediction.
Their model outperformed other existing stochastic video
prediction methods. With a unified architecture, Dual Motion
GAN [76] attempts to jointly resolve the future-frame and
future-flow prediction problems. The proposed framework
takes in as input a sequence of frames to predict the
next frame by combining the future frame prediction with
the future flow-based prediction. To achieve this, Dual
Motion GAN employs a probabilistic motion encoder (to
map frames to latent space), two Generators (a future-frame
Generator and a future-flow Generator), as well as a flow
estimator and flow-warping layer. A frame Discriminator and
a flow Discriminator are used to classifying fake and real
future frames and flow. Bhattacharjee et al. [80] tackle the
problem of future frames prediction by using multi-stage
GANs. To capture the temporal dimension and handle inter-
frame relationships, the authors proposed two new objective
functions, the Normalized Cross-Correlation Loss (NCCL)
and the Pairwise Contrastive Divergence Loss (PCDL). The
multistage GAN(MS-GAN) is made up of 2 GANs to
generate frames at two separate resolution whereby Stage-
1 GAN output is fed to Stage-2 GAN to produce the final
output. Kwon et al. [81] proposed a novel framework based on
CycleGAN [7] called the Retrospective CycleGAN to predict
future frames that are farther in time but are relatively sharper
than frames generated by other methods. The framework
consists of a single Generator and twoDiscriminators. During
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training, the Generator is tasked with generating both future
and past frames, and the retrospective cycle constraints are
used to ensure bi-directional prediction consistency. The
frame Discriminator detects individual fake frames, whereas
the sequence Discriminator determines whether or not a
sequence contains fake frames. According to the authors,
the sequence Discriminator plays a crucial role in predicting
temporally consistent future frames. To train their model, the
combination of two adversarial and two reconstruction loss
functions were used.

C. MEDICAL AND HEALTHCARE
GANs have immense medical image generation applications
and can be used to improve early diagnosis, reduce time and
expenditure. Becausemedical image data is generally limited,
GANs can be employed as data augmentation techniques
by conducting image-to-image translation, synthetic data
synthesis, and medical image super-resolution.

One major application of GANs in medical and healthcare
is the image-to-image translation framework, that is when
multi-modal images are required one can use images from
one modality or domain to generate images in another
domain. Magnetic resonance imaging (MRI), is considered
the gold standard in medical imaging. Unfortunately, it is
not a viable option for patients with metal implants, as the
metal in the machine could interfere with the results and the
patients’ safety. MR-GAN [82] is similar to CycleGAN [7]
and is used to transform 2D brain CT image slices into 2D
brain MR image slices. However, unlike CycleGAN, which
is used for unpaired image-to-image translation, MR-GAN
is trained using both paired and unpaired data and combines
adversarial loss, dual cycle-consistent loss, and voxel-wise
loss. MCML-GANs [83] uses the approach of multiple-
channels-multiple-landmarks (MCML) input to synthesize
color Retinal fundus images from a combination of vessel
tree, optic disc, and optic cup images. The authors used two
models based on the pix2pix [6] and CycleGAN [7] model
framework and proposed several different architectures for
the Generator model and compared their performance.
Zhao et al. [84] also proposed Tub-GAN and Tub-sGAN
image-to-image translation framework to generate retinal
and neuronal images. Armanious et al. [85] proposed
the MedGAN framework for generalizing image to image
translation in the field of medical image generation by com-
bining the adversarial framework with a new combination
of non-adversarial losses along with the usage of CasNet
a ResNets [86] inspired architecture. Sandfort et al. [87]
used CycleGAN [7] to transform contrast CT images into
noncontrast images. The authors compared the segmentation
performance of a U-Net trained on the original dataset versus
a U-Net trained on a combined dataset of original data and
synthetic non-contrast images were compared.

DermGAN [88] is used to generate synthetic images with
skin conditions. The model learns to convert a semantic
map containing a pre-specified skin condition, its size
and location, as well as the underlying skin colour, into

a realistic image that retains the pre-specified traits. The
DermGAN Generator uses a modified U-Net [23] where the
deconvolution layers are replaced with a nearest-neighbor
resizing layer followed by a convolution layer to reduce the
checkerboard effect. The Generator and Discriminator are
trained to minimize the combination of feature matching
loss, min-max GAN loss, l1 reconstruction loss for the whole
image, l1 reconstruction loss for the pathological region.
Apart from solving the image to image translation

problems GAN are widely used for synthetic medical
image generation( [89], [90], [91], [92]). Costa et al. [91]
implemented an adversarial autoencoder for the task of
conditional retinal vessel network synthesis. Beers et al. [93]
applied ProGAN to generate high resolution and high quality
512 × 512 retinal fundus images and 256 × 256 multimodal
glioma images. Zhang et al. [92] used DCGAN [5], WGAN
[19] and boundary equilibrium GANs (BEGANs) [94] to
generate synthetic medical images. They used the generated
synthetic images to augment their datasets to build models
with higher tissue recognition accuracy. Overall training with
augmented datasets saw an increase in tissue recognition
accuracy for the three GAN models when compared to base-
line models trained without data augmentation. fNIRS-GANs
[95] based on WGAN [19] is used to perform functional
near-infrared spectroscopy (fNIRS) data augmentation to
improve the fNIRS-brain- computer interface (BCI) accuracy.
Using data augmentation the authors were able to achieve
higher classification accuracy of 0.733 and 0.746 for both the
SVM and neural network models respectively as compared
to 0.4 for both the models trained without data augmen-
tation. To prevent data leakage by generating anonymized
synthetic electrocardiograms (ECGs), Piacentino et al. [96]
used GANs. The authors first propose a new general
procedure to convert raw data into images, which are
well suited for GANs. Following that, a GAN design was
established, trained, and evaluated. Because of its simplicity,
the authors chose to use Auxiliary Classifier Generative
Adversarial Network(ACGAN) [97] for their intended task.
Kwon et al. [98] used GANs to augment mRNA samples
to improve classification accuracy of deep learning models
for cancer detection. With 5 fold increase in training data
by combining GAN generated synthetic samples with the
original dataset, the authors were able to improve the F1 score
by 39%.

Image reconstruction and super resolution are vital
to obtaining high resolution images for diagnosis as due
to constraints such as the amount of radiation used for
MRI and other image acquisition techniques can highly
impact the quality of images obtained. Multi-level densely
connected super-resolution network, mDCSRN-GAN [99]
proposed by Chen et al. uses an efficient 3D neural network
design for the Generator architecture to perform image super
resolution. MedSRGAN [100] is an image super resolution
(SR) framework for medical images. The authors used a
novel convolutional neural network, Residual Whole Map
Attention Network (RWMAN) as the Generator network to
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low resolution features and then performs upsampling. For
the Discriminator instead of having just the single generated
high resolution image the authors used pairs of input low
resolution images and generated high resolution images.
Yamashita et. al [101] evaluated several super resolution
GAN models(SRCNN [102], VDSR [103], DRCN [104] and
ESRGAN [11]) for Optical Coherence Tomography (OCT)
[105] image enhancement. The authors found ESRGAN has
the worst performance in terms of PSRN and SSIM but
qualitatively, it was the best one producing sharper and high
contrast images.

D. BIOLOGY
Biology is an area where generative models especially GANs
can have a great impact by performing tasks such as protein
sequence design, data augmentation and imputation and
biological image generation. Apart from this GANs can also
be applied for binding affinity prediction.

Protein engineering the process of identifying or devel-
oping useful or valuable proteins sequences with certain
optimized properties. Several works have been done in rela-
tion to the application of Deep Generative models for protein
sequence, especially the use of GANs (Repecka et al. [106],
Amimeur et al. [107] and Gupta et al. [108]). GANs
can be used to generate novel valid functional protein
sequences and optimize protein sequences to have certain
specific properties. ProteinGAN [106] can learn to gen-
erate diverse functional protein sequences directly from
complex multidimensional amino acids sequence space.
The authors specifically used GANs to generate functional
malate dehydrogenases. Amimeur et al. [107] developed
the Antibody-GAN which uses a modified WGAN for the
generation of both single-chain and paired-chain antibody
sequence generation. Their model is capable of generating
extremely large diverse libraries of novel libraries that mimic
somatically hypermutated human repertoire response. The
authors also demonstrated the use of transfer learning to
use their GAN model to generate molecules with specific
properties of interest like MHC class II binding and specific
complementarity-determining region (CDR) characteristics.
FBGAN [108] uses the WGAN architecture along with the
analyzer in a feedback-loop mechanism to optimize the
synthetic gene sequences for desired properties using an
external function analyser. The analyzer is a differential
neural network and assigns a score to sampled sequences
from the Generator. As training progresses lowest scoring

generated sequences are replaced by high scoring generated
sequences for the entire Discriminator’s training set. GANs
were utilised by Anand at al. [109] to generate protein
structures, with the goal of using them in quick de novo
protein design.

GANs have been used for data augmentation and data
imputation in biology due to the lack of available biosamples
or the cost of collecting such samples. Some recent works
include the generation and analysis of single-cell RNA-seq
([110], [111]). The authors of cscGAN [111] or conditional
single-cell generative adversarial neural networks usedGANs
for the generation of realistic single-cell RNA-seq data.
Wang et al. [112] proposed GGAN, a GAN framework
to impute the expression values of the unmeasured genes.
To do this they used a conditional GAN to leverage the
correlations between the set of landmark and target genes
in expression data. The Generator takes the landmark gene
expression as input and outputs the target gene expression.
This approach leverages correlations between the set of
landmark and target genes in expression data from projects
like 1000 Genomes. Park et al. [113] applied GANs to
predict the molecular progress of Alzheimer’s disease (AD)
by successfully analyzing RNA-seq data from a 5xFAD
mouse model of AD. Specifically, the authors successfully
applied WGAN+GP [20] to bulk RNA-seq data with fewer
variations in gene expression levels and a smaller number of
genes. scIGAN [114] is a GAN-based framework for scRNA-
seq imputation. scIGANs can use complex, multi-cell type
samples to learn non-linear gene-gene correlations and train
a generative model to generate realistic expression profiles of
defined cell types.

GANs can also be used to generate biological imaging
data. CytoGAN [115] or Generative Modeling of Cell
Images, the authors evaluated the use of several GANmodels
such as DCGAN [5], LSGAN [116] and WGAN [19] for cell
microscopy imaging, in particular morphological profiling.
Through their experiments, they discovered that LSGANwas
the most stable, resulting in higher-quality images than both
DCGAN and WGAN. GANs have also been used for the
generation of realistic looking electron microscope images
(Han et al. [117]) and the generation of cells imaged by
fluorescence microscopy(Oskin et al. [118]).

Predicting binding affinities is an important task in drug
discovery though it still remains a challenge. To aid in drug
discovery by predicting binding affinity between drug and
target Zhao et al. [119] devised the use of a semi-supervised
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GANs-based method. The researchers utilised two GANs to
learn representations from raw protein and drug sequence
data, and a convolutional regression network to predict
affinity.

E. ASTRONOMY
With the advent of Big-data, the amount of data publicly
available to scientists for data-driven analysis is mind
boggling. Every day terabytes of data are being generated by
hundreds if not thousands of satellites across the globe. With
powerful computing resources GANs have found their way
into astronomy as well for tasks such as image translation,
data augmentation and spectral denoising.

The authors of RadioGAN [120] based their GAN on
the Pix2Pix model to perform image to image translation
between two different radio survey datasets to recover
extended flux densities. Their model recovers extended flux
density for nearly half of the sources within a 20% margin
of error and learns more complex relationships between
sources in the two surveys than simply convolving them
with a different synthesised beam. Several other authors
have also used image to image translation models such as
Pix2Pix, Pix2PixHD to generate solar images(Dash et al.,
Park et al. [121], Kim et al. [122], Jeong et al. [123],
Shin et al. [124] etc.).
Apart from image-to-image related tasks, GANs have

been extensively used to generate synthetic data in the
astronomy domain. Smith et al. [125] proposed SGAN to
produce realistic synthetic eXtremeDeep Field(XDF) images
similar to the ones taken by the Hubble Space Telescope.
Their SGAN model has a similar architecture to DCGAN
and can be used to generate synthetic images in astrophysics
and other domain. Ullmo et al. [126] used GANs to generate
cosmological images to bypass simulations which generally
require lots of computing resources and are quite expensive.
Dia et al. [127] showed that GANs can replace expensive
model-driven approaches to generate astronomical images.
In particular, they used ProGANs along withWasserstein cost
function to generate realistic images of galaxies. ExoGAN
[128] which is based on the DCGAN framework [5] is the
first deep-learning approach for solving the inverse retrieval
of exoplanetary atmospheres. According to the authors,
ExoGAN was found to be up to 300 times faster than
a standard retrieval for large spectral ranges. ExoGAN is
designed to work with a wide range of instruments and
wavelength ranges without requiring any additional training.
Fussell et al. [129] explored the use of DCGAN [5] and

StackGAN [22] in a chained fashion for generation of
high-resolution synthetic galaxies images.

The authors of Spectra-GAN [130] designed their
algorithm for spectral denoising. Their algorithm is based on
CycleGAN i.e. it has two Generators and two Discriminators,
with the exception that instead of unpaired samples
SpectraGAN used paired examples. The model comprises of
three loss functions: adversarial loss, cycle-consistent loss,
and generation-consistent loss.

F. REMOTE SENSING
Using GANs for remote sensing applications can be broadly
divided into the following main categories:

• Data generation or augmentation: Lin et al. [131]
proposed multiple-layer feature-matching generative
adversarial networks (MARTA GANs) for remote
sensing data augmentation. MARTA GAN is based on
DCGAN [5] however while DCGAN could produce
images with a 64 × 64 resolution, MARTA GAN can
produce 256×256 remote sensing images. To generate
high-quality samples of remote images perceptual loss
and feature-matching loss were used for model training.
Mohandoss et al. [132] presented the MSG-ProGAN
framework that uses ten bands of Sentinel-2 satellite
imagery with varying resolutions to generate realistic
multispectral imagery for data augmentation. To help
with training stability the authors based their model
on the MSGGAN [133], ProGAN [4] models and used
WGAN-GP [20] loss function. Thus, MSG-ProGAN
can generate multispectral 256 × 256 satellite images
instead of RGB images.

• Super Resolution: HRPGAN [134] uses a PatchGAN
inspired architecture to convert low resolution remote
sensing images to high resolution images. The authors
did not use batch normalization to preserve textures and
sharp edges of ground objects in remote sensing images.
Also, ReLU activations were replaced with SELU
activations for overall lower training loss and stable
training. In addition, the authors used a new loss function
consisting of the traditional adversarial loss, perceptual
reconstruction loss and regularization loss to train their
model. D-SRGAN [135] converts low resolution Digital
Elevation Models (DEMs) to high-resolution DEMs.
D-SRGAN is based on the SRGAN [8] model. For
training, D-SRGAN uses the combination of adversarial
loss and content loss.

VOLUME 12, 2024 18347



A. Dash et al.: Review of GANs and Its Applications in a Wide Variety of Disciplines

TABLE 6. Applications in biology.

TABLE 7. Applications in astronomy.

• Pan-Sharpening: Liu et al. [136] proposed PSGAN
for solving the task of image pan-sharpening and
carried out several experiments using different image
datasets and different Generator architectures. PSGAN
is superior to many popular pan-sharpening approaches
in terms of generating high-quality pan-sharpened
images with fine spatial details and high-fidelity spectral
information under both low-scale and full-scale image
settings, according to their experiments. Furthermore,
the authors discovered that two-stream architecture
is usually preferable to stacking and that the batch
normalisation layer and the self-attention module are
undesirable in pan-sharpening. Pan-GAN [137] uses one
Generator and two Discriminators for performing pan
sharpening. The Generator is based on the PNN [102]
architecture but the image scale in the Generator remains
the same in different layers. The spectral and spatial
Discriminators are similar in structure but have different
inputs. The generated HRMS image or the interpolated
LRMS image is fed into the spectral Discriminator. The
original panchromatic image or the single channel image
generated by the generated HRMS image after average
pooling along the channel dimension are the inputs for
the spatial Discriminator.

• Haze removal and Restoration: Edge-sharpening
cycle-consistent adversarial network (ES-CCGAN)
[138] is a GAN-based unsupervised remote sensing
image dehazing method based on the CycleGAN
[7]. The authors used the unpaired image-to-image
translation techniques for performing image dehazing.
ES-CCGAN includes two generator networks and two
discriminant networks. The Generators use DenseNet
[139] blocks instead of the ResNet [140] block to
generate dehazed remote-sensing images with plenty
of texture information. An edge-sharpening loss was
designed to restore clear edges in the images in addition
to the adversarial loss, cycle-consistency loss and cyclic
perceptual-consistency loss. Furthermore, to preserve
contour information, a VGG16 [141] network was
re-trained using remote-sensing image data to evaluate
the perceptual loss. To tackle the problem of lack of
availability of pairs of clear images and corresponding
haze images to train the model, Sun et al. [142] proposed

a cascade method combining two GANs. A learning-
to-haze GAN(UGAN) learns to haze remote sensing
images using unpaired clear and haze image sets.
The UGAN then guides the learning-to-dehaze GAN
(PAGAN) to learn how to dehaze UGAN hazed images.
Wang et al. [143] developed the Image Despeckling
Generative Adversarial Network (ID-GAN) to restore
speckled Synthetic Aperture Radar (SAR) images.
Their proposed method uses an encoder-decoder type
architecture for the Generator which performs image
despeckling by taking a noisy image as input. The
Discriminator follows a standard layout with a sequence
of convolution, batch normalization and ReLU layers,
sigmoid function to distinguish between real and
synthetic images. The authors used a refined loss
function which is made up of pixel-to-pixel Euclidean
loss, perceptual loss, and adversarial loss, all combined
with appropriate weights.

• Cloud Removal: Several authors have used GANs
for the removal of clouds contamination from remote
sensing images( [144], [145], [146], [147]). CLOUD-
GAN [144] can translate cloudy images into cloud-free
visible range images. CLOUD-GAN functions similar
to CycleGAN [7] having two Generators and two
Discriminators. The authors use the LSGAN [116]
training method as it has been shown to generate higher
quality images with a muchmore stable learning process
compared to regular GANs. For thin cloud removal
in multi-spectral images, Li et al. [145] proposed a
novel semi-supervised method called CR-GAN-PM,
which combines Generative Adversarial Networks and
a physical model of cloud distortion. There are three
networks in the CR-GAN-PM: an extraction network,
a removal network, and a discriminative network. The
GAN architecture is made up of the removal and dis-
criminative networks. A combination of adversarial loss,
reconstruction loss, correlation loss and optimization
loss was used for training CR-GAN-PM.

G. MATERIAL SCIENCE
GANs have a wide range of applications in material science.
GANs can be used to handle a variety of material science
challenges such as Micro and crystal structure generation
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and design, Designing of complex architectured materials,
Inorganic materials design, Virtual microstructure design
and Topological design of metaporous materials for sound
absorption.

Singh et al. [148] developed physics aware GAN model
for the synthesis of binary microstructure images. The
authors used three models to accomplish the task. The
first model is the WGAN-GP [20]. The second approach
replaces the usual Discriminator in a GAN with an invari-
ance checker, which explicitly enforces known physical
invariances. The third model combines the first two to
recreate microstructures that adhere to both explicit physics
invariances and implicit restrictions derived from image data.
Yang et al. [149] proposed a GAN-based framework for
microstructural materials design. A Bayesian optimization
framework is used to obtain the microstructure with desired
material property by processing the GAN generated latent
variables. CrystalGAN [150] is a novel GAN-based frame-
work for generating chemically stable crystallographic struc-
tures with enhanced domain complexity. The CrystalGAN
model consists of three main components, a First step GAN,
a Feature transfer procedure and the Second step GAN
synthesizes. The First step GAN resembles the cross-domain
GAN and generates pseudo-binary samples where the
domains are mixed. The Feature transfer technique brings
greater order complexity to the data generated from the sam-
ples obtained in the preceding stage. Finally, the second step
GAN synthesizes ternary stable chemical compounds while
adhering to geometric limitations. Kim et al. [151] proposed
leveraging a coordinate-based crystal representation inspired
by point clouds to generate crystal structures using generative
adversarial network. Their Composition-Conditioned Crystal
GAN can generate materials with the desired chemical
composition by conditioning the network with a one-hot
encoded composition vector.

Designing complex architectured materials is challenging
and is heavily influenced by the experienced designers’ prior
knowledge. To tackle this issue, Mao et al. [152] successfully
usedGANs for the design of complex architecturedmaterials.
Millions of randomly generated architectured materials clas-
sified into different crystallographic symmetries were used
to train their model. Their proposedmodel generates complex
architectured designs that require no prior knowledge and can
be readily applied in a wide range of applications.

Dan et al. proposed MatGAN [153] is the first GAN
model for efficient sampling of inorganic materials design
space by generating hypothetical inorganic materials.
MatGAN, based on WGAN [19] can learn implicit chemical

compositional rules from existing materials, allowing them
to generate hypothetical yet chemically sound molecules.
Another similar work was carried out by Hu et al. [154] where
they used WGAN [19] to generate hypothetical inorganic
materials consistent with the atomic combination of the
training materials.

Lee et al. [155] employed DCGAN [5], CycleGAN [7]
and Pix2Pix [6] to generate realistic virtual microstructural
graph images. KL-divergence, a similarity metric that is
considerably below 0.1, confirmed the similarity between the
GAN-generated and ground truth images.

GANs were used by Zhang et al. [156] to greatly
accelerate and improve the topological design of metaporous
materials for sound absorption. Finite Element Method
(FEM) simulation image data were used to train the model.
The quality of the GAN generated designs was confirmed by
FEM simulation and experimental evaluation, demonstrating
that GANs are capable of generating metaporous material
designs with satisfactory broadband absorption performance.

H. FINANCE
Financial data modeling is a challenging problem as there are
complex statistical properties and dynamic stochastic factors
behind the process. Many financial data are time-series data,
such as real property price and stock market index. Many
of them are very expensive to available and usually do not
have enough labeled historical data, which greatly limits the
performance of deep neural networks. In addition, unlike
the static features, such as gender and image data, time-
series data has a high temporal correlation across time. This
becomes more complicated when we model multivariate time
series where we need to consider the potentially complex
dynamics of these variables across time. Recently, with the
development and wide usage of GAN in image and audio
tasks, a lot of research works have proposed to generate
realistic time-series synthetic data in finance.

Efimov et al. [157] combine conditional GAN (CGAN)
and Deep Regret Analytic Generate Adversarial Networks
(DRAGANs) to replicate three American Express datasets
with high fidelity. A regularization term is added in the
Discriminator loss in DRAGANs to avoid gradient exploding
or gradient vanishing effects as well as to stabilize the conver-
gence. Zhou et al. [158] adopt the GAN-FD model (A GAN
model for minimizing both forecast error loss and direction
prediction loss) to predict stock prices. The Generator is
based on LSTM layers while the Discriminator is using CNN
layers. Li et al. [159] propose a conditional Wasserstin GAN
(WGAN) named Stock-GAN to capture history dependency
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for stock market order streams. The proposed Generator
network has two crafted features (1) approximating the
double auction mechanism underlying stock exchanges and
(2) including the order-book features as the condition infor-
mation. Wiese et al. [39] introduce Quant GANs which use
the Temporal Convolutional Networks (TCNs) architecture,
also known as WaveNet [160] as the Generator. It shows the
capability of capturing the long-range dependence such as
the presence of volatility clusters in stock data such as S&P
500 index. FIN-GAN [161] captures the temporal structures
of financial time-series so as to generate the major stylized
facts of price returns, including the linear unpredictability,
the fat-tailed distribution, volatility clustering, the leverage
effects, the coarse-fine volatility correlation, and the gain/loss
asymmetry. Leangarun et al. [162] build LSTM-GANs to
detect the abnormal trading behaviors caused by stock price
manipulations. The base architecture for both Generator and
Discriminator is LSTM. The simulated manipulation cases
are used for testing purposes. The detection systemwas tested
with the trading data from the Stock Exchange of Thailand
(SET) which achieves 68.1% accuracy in detecting pump-
and-dump manipulations in unseen market data.

I. MARKETING
GANs can be leveraged to help businesses create effective
marketing tools by synthesizing novel and unique designs for
logos and generate fake images of models.

Typically designing a new logo is a fairly long and
exhausting process and requires a lot of time and effort of
the designer to meet the specific requirements of the clients.
Sage et al. [163] put forward iWGAN, a GAN-based
framework for virtually generating infinitely many variations
of logos by specifying parameters such as shape, colour, and
so on, in order to facilitate and expedite the logo design
process. The authors proposed clustered GAN model to
train on multi-modal data. Clustering was used to stabilise
GAN training, prevent mode collapse and achieve higher
quality samples on unlabeled datasets. The GAN models
were based on the DCGAN [5] and WGAN-GP [20] mod-
els. LoGAN [164] or the Auxiliary Classifier Wasserstein
GenerativeAdversarial Neural Networkwith gradient penalty
(AC-WGAN-GP) is based on the ACGAN [97] architecture.
LoGAN can be used to generate logos conditioned on twelve
predetermined colors. LoGAN consists of a Generator,
a Discriminator and a classification network to help the
Discriminator in classifying the logos. The authors use the
WGAN-GP [20] loss function for better training stability
instead of using the ACGAN loss.

GANs can be used to replace real images of people
for marketing-related ads, by generating synthetic images
and videos thus alleviate problems related to privacy.
Ma et al. [165] proposed Pose Guided Person Image Gener-
ation Network(PG2) to generate synthetic fake images of a
person in arbitrary poses conditioned on an image of a person
and a new pose. PG2 uses a two-stage process: Stage 1 Pose
integration and Stage 2 Image refinement. Stage 1 generates
a coarse output based on the input image and the target pose
that depicts the human’s overall structure. Stage 2 adopts
the DCGAN [5] model and refine the initial result through
adversarial training, resulting in sharper images. Deformable
GANs [166] generate person images based on their appear-
ance and pose. The authors introduced deformable skip
connections and nearest neighbor loss to address large spatial
deformation and to fix misalignment between the generated
and ground-truth images. Song et al. [167] proposed E2E
which uses GANs for unsupervised pose-guided person
image generation. The authors break down the difficult task of
learning a direct mapping under various poses into semantic
parsing transformation and appearance generation to deal
with its complexity.

J. FASHION DESIGNING
Fashion design is not the first thing that comes to mind when
we think of GANs, however developing designs for clothes
and outfits is another area where GANs have been utilized
([168], [169], [170]).
Based on the cGAN [18], Attribute-GAN [169] learns a

mapping from a pair of outfits based on clothing attributes.
The model has one Generator and two Discriminators.
The Generator uses a U-Net architecture. A PatchGAN
[171] Discriminator is used to capture local high-frequency
structural information and a multi-task attribute classifier
Discriminator is used to determine whether the generated
fake apparel image has the expected ground truth attributes.
Yuan et al. [170] presented Design-AttGAN, a new version
of attribute GAN (AttGAN) [172] to edit garment images
automatically based on certain user-defined attributes. The
AttGAN’s original formulation is changed to avoid the
inherent conflict between the attribute classification loss and
the reconstruction loss.

K. SPORTS
GANs can be used to generate sports texts, augment sports
data, and predict and simulate sports activity to overcome the
lack of labeled data and get insights into player behaviour
patterns.
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Li et al. [173] used WGAN-GP [20] for automatic
generation of sport news based on game stats. Their WGAN
model takes scores as input and outputs sentences describing
how one team defeated another. This paper also showed the
potential applications of GANs in the NLP area.

JointsGAN [174] was proposed by Li et al. to augment
soccer videos with a dribbling actions dataset for improving
the accuracy of the dribbling styles classification model.
The authors use Mask R-CNN [175] and OpenPose [176]
to build dribbling player’s joint model to act as a condition
and guide the GAN model. The accuracy of classification is
improved from 88.14% percent to 89.83% percent using the
dribbling player’s joints model as the condition to the GAN.
Theagarajan et al. [177] used GANs to augment their dataset
to build robust deep learning classification, object detection
and localization models for soccer-related tasks. Specifically,
they proposed the Triplet CNN-DCGAN framework to add
more variability to the training set in order to improve the
generalisation capacity of the aforementioned models. The
GAN-based model is made of a regularizer CNN (i.e., Triplet
CNN) along with DCGAN [5] and uses the DCGAN loss and
the binary cross-entropy loss of the Triplet CNN.

Memory augmented Semi-Supervised Generative Adver-
sarial Network (MSS-GAN) [178] can be used to predict the
shot type and location in tennis. MSS-GAN is inspired by
SS-GAN [179], coupled with memory modules to enhance its
capabilities. The Perception Network (PN) is used to convert
input images into embeddings, which are then combined with
embeddings from the Episodic Memory (EM) and Semantic
Memory (SM) to predict the next shot via the Response
Generation Network (RGN). Finally, a GAN framework is
used to train the network, with the RGN’s predicted shot
being passed to the Discriminator, which determines whether
or not it is a realistic shot. BasketballGAN [180] is a
cGAN [18] and WGAN [19] based framework to generate
basketball set plays based on an input condition(offensive
tactic sketched by coaches) and a random noise vector.
The network was trained by minimizing the adversarial loss
(Wasserstein loss [19]) dribbler loss, defender loss, ball
passing loss, and acceleration loss.

L. MUSIC
Because human perception is sensitive to both global
structure and fine-scale waveform coherence, music or audio

synthesis is an intrinsically tough deep learning problem. As a
result, synthesising music requires the creation of coherent
raw audio waveforms that preserve both global and local
structures. GANs have been applied for tasks such as music
genre fusion and music generation.

FusionGAN [181] is a GAN based framework for unsu-
pervised music genre fusion. The authors proposed the use of
a multi-way GAN based model and utilized the Wasserstein
distance measure as the objective function for stable training.

MidiNet [182] is a CNN-GAN based model to generate
music with multiple MIDI channels. The model uses
conditioner CNN to model the temporal dependencies by
using the previous bar to condition the generation of the
present bar, providing a powerful alternative to RNNs. The
model features a flexible design that allows it to generate
many genres of music based on input and specifications.
Dong et al. [183] proposedMulti-track Sequential Generative
Adversarial Networks for Symbolic Music Generation and
Accompaniment or MuseGAN. Based on GANs, MuseGAN
can be used for symbolic multi-track music generation.
Dong et al. [184] demonstrated a unique GAN-based model
for producing binary-valued piano-rolls by employing binary
neurons [185] as a refiner network in the Generator’s output
layer. When compared to existing approaches, the generated
outputs of their model with deterministic binary neurons
have fewer excessively fragmented notes. GANSYNTH
[186], based on GANs can generate high-fidelity and
locally-coherent audio. The proposed model outperforms
the state-of-the-art WaveNet [160] model in generating
high fidelity audio while also being much faster in sample
generation. GANs were employed by Tokui [187] to create
realistic rhythm patterns in unknown styles, which do not
belong to any of the well-known electronic dance music
genres in training data. Their proposed Creative-GAN model
uses the Genre Ambiguity Loss to tackle the problem of
originality. Li et al. [188] presented an inception model-based
conditional generative adversarial network approach (INCO-
GAN), which allows for the automatic synthesis of complete
variable-length music. Their proposed model comprises of
four distinct components: a conditional vector Generator
(CVG), an inception model-based conditional GAN (INCO-
GAN), a time distribution layer and an inception model [30].
Their analysis revealed that the proposed method’s music is
remarkably comparable to that created by human composers,
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with a cosine similarity of up to 0.987 between the frequency
vectors. Muhamed et al. [189] presented the Transformer-
GANs model, which combines GANs with Transformers
to generate long, high-quality coherent music sequences.
A pretrained SpanBERT [190] is used as the Discriminator
and Transformer-XL [191] as the Generator. To train on long
sequences, the authors use the Gumbel-Softmax technique
[192] to obtain a differentiable approximation of the sampling
process and to keep memory needs reasonable, a variant
of the Truncated Backpropagation Through Time (TBPTT)
algorithm [193] was utilised for gradient propagation over
long sequences.

V. LIMITATIONS OF GANs AND FUTURE DIRECTION
In this section, we’ll go through some of the issues that GANs
encounter, notably those related to training stability. We also
discuss some of the prospective research areas in which GAN
productivity could be enhanced.

A. LIMITATIONS OF GANs
Generative adversarial networks (GANs) have gotten a lot of
interest because of their capacity to use a lot of unlabeled data.
While great progress has been achieved in alleviating some
of the hurdles associated with developing and training novel
GANs, there are still a few obstacles to overcome.We explain
some of the most typical obstacles in training GANs, as well
as some proposed strategies that attempt to mitigate such
issues to some extent.

1) Mode Collapse: In most cases, we want the GAN to
generate a wide range of outputs. For example, while
creating photos of human faces we’d like the Generator
to generate varied-looking faces with different features
for every random input to Generator. Mode collapse
happens when the Generator can produce only a single
type of output or a small set of outputs. This may
occur as a result of the Generator’s constant search
for the one output that appears most convincing to the
Discriminator in order to easily trick the Discriminator,
and hence continues to generate that one type.
Several approaches have been proposed to alleviate
the problem of mode collapse. Arjovsky et al. [19]
found that Jensen-Shannon divergence is not ideal for
measuring the distance of the distribution of the disjoint
parts. As a result, they proposed the use of Wasserstein
distance to calculate the distance between the produced
and real data distributions. Metz et al. [194] proposed
Unrolled Generative Adversarial Networks, which
limit the risk of the Generator being over-optimized for
a certain Discriminator, resulting in less mode collapse
and increased stability.

2) Non-convergence: Although GANs are capable of
achieving Nash equilibrium [1], arriving at this equi-
librium is not straightforward. The training procedure
necessitates maintaining balance and synchronisation
between the Generator and Discriminator networks for
optimal performance. Furthermore, only in the case of
a convex function can gradient descent guarantee Nash
equilibrium.
Adding noise to Discriminator inputs and penalising
Discriminator weights ([195], [196]) are two techniques
of regularisation that authors have sought to utilise to
improve GAN convergence.

3) Vanishing Gradients: Generator training can fail
owing to vanishing gradients if the Discriminator is
too good. A very accurate Discriminator produces
gradients around zero, providing little feedback to the
Generator and slowing or stopping learning.
Goodfellow et al. [1] proposed a tweak to minimax loss
to prevent the vanishing gradients problem. Although
this tweak to the loss alleviates the vanishing gradients
problem, it does not totally fix the problem, resulting in
more unstable and oscillating training. TheWasserstein
loss [19] is another technique to avoid vanishing
gradients because it is designed to prevent vanishing
gradients even when the Discriminator is trained to
optimality.

B. FUTURE DIRECTION
Even though GANs have some limits and training issues,
we simply cannot overlook their enormous potential as
generative models. The most important area for future
research is to make advancements in theoretical aspects to
address concerns like mode collapse, vanishing gradients,
non-convergence, and model breakdown. Changing learn-
ing objectives, regularising objectives, training procedures,
tweaking hyperparameters, and other techniques have been
proposed to overcome the aforementioned problems, as out-
lined in section V-A. In most cases, however, accomplishing
these objectives entails a trade-off between desired output
and training stability. As a result, rather than addressing one
training issue at a time, future research in this field should
use a holistic approach in order to achieve a breakthrough in
theory to overcome the challenges mentioned above.

Besides overcoming the above theoretical aspects dur-
ing model training, Saxena et al. [197] highlight some
promising future research directions. (1) Keep high image
quality without losing diversity. (2) Provide more theoretical
analysis to better understand the tractable formulations
during training and make training more stable and straight-
forward. (3) Improve the algorithm to make training efficient
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(4) Combine other techniques, such as online learning, game
theory, etc with GAN.

VI. CONCLUSION
In this paper, we presented state-of-the-art GAN models
and their applications in a wide variety of domains. GANs’
popularity stems from their ability to learn extremely
nonlinear correlations between latent space and data space.
As a result, the large amounts of unlabeled data that remain
closed to supervised learning can be used. We discuss
numerous aspects of GANs in this article, including theory,
applications, and open research topics. We believe that this
study will assist academic and industry researchers from
various disciplines in gaining a full grasp of GANs and their
possible applications. As a result, they will be able to analyse
the potential application of GANs for their specific tasks.
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