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Faulty Math Problem
Eight pounds of feathers and two ounces of gold together cost $932. Fourteen

pounds of feathers and three ounces of gold together cost $932. What is the cost
of five pounds of feathers and five ounces of gold?

LLM Responses
GPT-4-Turbo Gemini-1.5-Pro Qwen-1.5-72B

$5825 $1160 $3883.33

Figure 1: A faulty math problem and answers by popular LLMs.
ABSTRACT

Consider the math problem: “Lily received 3 cookies from her best friend yester-
day and ate 5 for breakfast. Today, her friend gave her 3 more cookies. How many
cookies does Lily have now?” Many large language models (LLMs) in previous
research approach this problem by calculating the answer “1” using the equation
“3 -5+ 3. However, from a human perspective, we recognize the inherent flaw
in this problem: Lily cannot eat 5 cookies if she initially only had 3. This dis-
crepancy prompts a key question: Are current LLMs merely BLIND SOLVER that
apply mathematical operations without deeper reasoning, or can they function as
LOGICAL THINKER capable of identifying logical inconsistencies?

To explore this question, we propose a benchmark dataset, FAULTYMATH, which
includes faulty math problems of rich diversity: i) multiple mathematical cate-
gories, e.g., algebra, geometry, number theory, etc., ii) varying levels of diffi-
culty, and iii) different origins of faultiness—ranging from violations of common
sense and ambiguous statements to mathematical contradictions and more. We
evaluate a broad spectrum of LLMs, including open-source, closed-source, and
math-specialized models, using FAULTYMATH across three dimensions: (i) How
accurately can the models detect faulty math problems without being explicitly
prompted to do so? (ii)) When provided with hints—either correct or mislead-
ing—about the validity of the problems, to what extent do LLMs adapt to become
reliable LOGICAL THINKER? (iii) How trustworthy are the explanations gener-
ated by LLMs when they recognize a math problem as flawed? Through extensive
experimentation and detailed analysis, our results demonstrate that existing LLMs
largely function as BLIND SOLVER and fall short of the reasoning capabilities
required to perform as LOGICAL THINKER[H

*Equal contribution.
'Data&Code: |https://github.com/JunyiYe/FaultyMathProblem


https://github.com/JunyiYe/FaultyMathProblem

1 INTRODUCTION

Our exploration begins with the example presented in Figure[I| where a logically flawed math prob-
lem still leads prominent large language models (LLMs) to produce various numerical answers.
This outcome is surprising, as we would expect an intelligent Al system not only to provide correct
solutions to valid math problems but also to identify when a problem is logically inconsistent and
therefore should not yield any answer, even without explicit hints about its flawed nature. This ob-
servation prompts us to re-examine the current development trajectory of LLMs for mathematical
problem-solving (Ahn et al., [2024; [Hendrycks et al.l 2021aj Imani et al.| |2023), which generally
assume that the provided math problems are valid and require only computational solutions, without
considering the possibility of logical flaws. This raises a crucial question: Are contemporary LLMs
merely BLIND SOLVER that execute mathematical operations without deeper reasoning, or can they
evolve into LOGICAL THINKER capable of detecting logical inconsistencies?

To address this question, we introduce a new dataset, FAULTYMATH, which incorporates three di-
mensions of diversity: (i) a range of mathematical categories, including algebra, geometry, number
theory, etc., (ii) varying levels of difficulty, and (iii) a rich variety of falsehoods, such as violations
of common sense, insufficient information, mathematical contradictions, etc.

The creation of FAULTYMATH was a multi-step process. Initially, we recruited participants from the
American Mathematics Competitions (AMC) to manually generate faulty math problems. However,
this led to a dataset that was disproportionately skewed toward specific mathematical categories and
types of logical flaws. To create a more balanced and comprehensive dataset, we developed a three-
stage pipeline: (i) We used GPT-4 (Achiam et al., [2023)) to modify valid problems from the MATH
dataset (Hendrycks et al.,2021a)) into flawed ones, generating 2,000 potential faulty math problems;
(ii) we then prompted GPT-4 to perform self-evaluation, identifying 635 of these as likely faulty;
(iii) finally, human annotators reviewed these problems, confirming 363 as genuinely faulty.

We conducted an extensive evaluation on FAULTYMATH using ten popular LLMs, including both
open-source, closed-source, and math-specialized models, to assess their capacity to function as
LoGICAL THINKER. Our evaluation focused on three key aspects: (i) Without any hints, how
effectively can LLMs recognize that a given math problem is faulty? Unfortunately, even the best-
performing model, Gemini 1.5 Pro, identified only 33.33% of the faulty problems successfully. (ii)
When provided with hints—either factually correct or misleading ones, how reliably do LLMs be-
have as LOGICAL THINKER? Our results indicate that factually correct hints about the problem’s
faultiness significantly improve performance, but models still fall short of perfection. Moreover,
LLMs demonstrated vulnerability to misleading hints, with models like Gemini and GPT-4 exhibit-
ing confirmational bias when influenced by incorrect hints. (iii) How accurate are the explanations
generated by LLMs when they correctly identify a faulty problem? Our findings reveal that mod-
els such as Gemini and Qwen-1.5 consistently produced correct explanations when they recognized
falsehoods, highlighting their ability to articulate reasoning effectively in such cases.

In summary, this study advocates for the development of LLMs that go beyond mere BLIND
SOLVER and evolve into true LOGICAL THINKER. The key contributions of this paper are threefold:

* We identify the critical gap in LLMs’ mathematical reasoning abilities, highlighting the
need to shift from BLIND SOLVER to LOGICAL THINKER.

* We introduce FAULTYMATH, a balanced dataset comprising 363 faulty math problems,
specifically designed to evaluate this aspect of LLM performance.

* Through extensive analysis, we provide comprehensive insights into the strengths and lim-
itations of current LLMs in mathematical reasoning and their capacity to detect logical
inconsistencies.

2 RELATED WORK

Mathematical problem-solving has long been a significant area of Al research. One of the pioneer-
ing works in automatic math word problem (MWP) solving (Bobrow, [1964) developed a system
that used rules and a parser to translate word problems into algebraic equations for computational
solving. With the advent of deep learning, Seq2Seq models (Wang et al.| 2017; Huang et al., 2018
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Figure 2: FAULTYMATH curation process. Three stages: i) GPT-4 converts valid math problems
into faulty ones; ii) GPT-4 self-verifies; iii) human verification.

Saxton et al., |2019; Wang et al., 2019; |Xie & Sun, 2019; |Liang et al., 2022) and Seq2Tree (Wang
et al., 2018} |Liu et al.;|2019; Wu et al.,|2020) models began leveraging neural network architectures
to process and solve complex mathematical problems, laying the foundation for further advance-
ments in the field. Recently, we have witnessed the development of general-purpose LL.Ms such as
GPT-4, Claude3 (Anthropic, |2024), Gemini (Reid et al.| [2024)), Llama3 (Meta, 2024), etc. Mathe-
matical reasoning benchmarks GSN8K (Cobbe et al., 2021) and MATH (Hendrycks et al.l 2021b),
have become crucial in the evaluation of LLMs’ math problem-solving capability. In addition, there
are specific LLMs trained on mathematical corpora (Azerbayev et al., 2021} Wang et al.,|2023}; Paster.
et al.,[2023;|Toshniwal et al., 2024b), including MathVerse (Lewkowycz et al.,[2022), Internlm-Math
(Ying et al.}[2024b) and DeepSeekMath (Shao et al.,[2024)).

Several techniques have been developed to improve the LLM performance on those benchmarks.
Prompt engineering, including zero-shot and few-shot learning (Brown et al.| 2020} [Lewkowycz
et al.l [2022)), involves designing specific prompts to guide the model to produce more accurate
and contextually relevant outputs. Chain-of-thought (CoT) prompting (Wei et al.l|2022) is another
technique that involves converting a query into a set of intermediate queries in a sequential manner
to enhance the reasoning process of LLMs. Deeply Understanding the Problems (DUP) (Zhong
et al., 2024) emphasizes a thorough comprehension of the problem before attempting to solve it,
ensuring that the nuances and complexities are fully grasped. Program-aided language modeling
(Zhou et al.,2023; Zhang et al., [2024} | Ying et al., 2024b)) leverages the code completion capabilities
of language models to enhance their reasoning capacities, as demonstrated in recent studies. Agent-
aided approaches (Lei, [2024; Toshniwal et al.,|20244a), including multi-agent techniques, collectively
contribute to significant improvements in the mathematical reasoning and problem-solving abilities
of modern LLMs.

However, prior work has primarily focused on enhancing LLM performance on valid math problems,
leaving the logical reasoning abilities of LLMs in more complex mathematical environments largely
underexplored. Our study distinguishes LLMs’ roles as LOGICAL THINKER from BLIND SOLVER,
and introduces a collection of faulty math problems, both with and without hints, to evaluate their
true capacity for mathematical reasoning.

3 FAULTYMATH CURATION AND STATISTICS

Generating faulty math problems is not only inherently a creative process, but it is also unconven-
tional, as it is not a typical human task. Our initial approach involved enlisting American high school
math competition (AMC) participants to create faulty math problems from scratch. However, this
effort resulted in a problem set that is biased toward particular mathematical categories and specific
types of falsehoods. We then explored data augmentation via LLMs, using this seed dataset cre-
ated by high-school students, but this approach also failed. Inspired by recent studies on generating
synthetic data using LLMs (Lou et al.| 2024} |Yuan et al.| 2023)), we extensively experimented with
modifying valid problems from the MATH dataset using GPT-4 by giving it well-crafted prompts.



This approach significantly improved the likelihood of generating genuinely false math problems.
We began by generating a pool of raw false math problems using GPT-4. After a carefully designed
filtering process conducted by GPT-4, human evaluators assessed the falsehood of these problems.
The entire process is summarized in Figure 2] with details provided in the following section.

3.1 FAULTYMATH CURATION

Valid to Raw Faulty Math Problem. To compile a diverse collection of faulty math problems
across different categories (e.g., Algebra, Geometry), we used the MATH dataset (Hendrycks
et al.| [2021a) as our source for valid problems. We selected 400 problems from each of five cat-
egories—Algebra, Geometry, Counting & Probability, Number Theory, and Precalculus—totaling
2,000 valid problems. Given its creativity and strong performance on the MATH dataset, we chose
GPT-4 as our LLM for this stage.

We provided GPT-4 with each valid math problem and its correct solution, instructing it to

* convert the problem into a false and unsolvable version, and

* generate a brief explanation of why the problem is faulty—a crucial step that significantly
improved the generation of genuinely faulty problems.

LLM Self-Filtering. We found that many of the 2,000 generated false math problems were actu-
ally solvable, so we implemented a self-verification process to filter out those that did not meet the
criteria for being truly unsolvable.

In this self-evaluation process, GPT-4 was initially presented with a “raw false math problem” to
solve. After providing a solution, it was prompted with a “simple explanation” of why the problem
was unsolvable, encouraging GPT-4 to reflect on its initial solution. Finally, we posed a multiple-
choice question to GPT-4, asking for its final decision on the entire conversation. The choices (A,
B, or C) are outlined in Figure 2]

If GPT-4 outputs “A”, it implies that GPT-4 believes the raw faulty math problem to be a genuine
faulty math problem but not a challenging one to identify. If GPT-4 outputs “B”, it implies that
GPT-4 considered the raw false math problem to be a genuine false math problem and a challenging
one that it could not identify to be false when initially presented. An output of “C” implies that the
false math problem is a valid math problem with a possible solution.

We filtered out the problems marked “C” and “A,” as they had a lower likelihood of being genuine
and challenging false math problems. This left us with 635 problems.

Human Verification. The remaining 635 math problems were then reviewed by human annotators
for verification. Each annotator independently assessed all 635 problems to determine whether they
were genuinely false, meaning no solution existed as presented. Through this manual verification
process, 363 problems were confirmed as genuine false math problems by both annotators. The
other 272 problems were found to be solvable and were discarded.

3.2 FAULTYMATH STATISTICS.

Figure [3] (left) illustrates the distribution of false math problems across various mathematical cate-
gories, demonstrating GPT-4’s balanced capability in generating false math problems for each cat-
egory. A notable trend within the dataset is the prevalence of higher-difficulty problems, indicating
that more complex math problems are more likely to mislead GPT-4 when transformed into false
problems.

To understand the origins of errors in FAULTYMATH, we randomly selected 50 samples and manu-
ally classified the types of falsehoods. Subsequently, we used GPT-4o to systematically categorize
each false problem into these predetermined categories. As shown in Figure [3] (right), the analysis
reveals that Mathematical Contradiction and Invalidity are the most common types of errors gen-
erated by GPT-4. This trend suggests that the model tends to introduce these specific errors during
the problem conversion process because these two types are easier to construct and are applicable
across various problems. Additionally, these types of errors are more likely to be retained as they
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Figure 3: Distributions of the dataset by difficulty level and math category (left), and by the origin
of falsehood (right).

effectively challenge the model’s problem-solving accuracy. In contrast, errors such as Common
Sense Violation, Misleading Statements, and Undefined Terms occur less frequently, showcasing the
model’s preferences in generating false math problems. The analysis highlights the model’s ability
to generate complex false problems and its tendency towards certain types of errors, showcasing
both the strengths and preferences of the model.

4 EVALUATION METHOD

The primary task for LLMs in this research is to determine whether they can identify issues in
given false math problems. However, directly asking this question would signal to the LLMs that
the problem is false, thereby influencing their response. The same constraint applies to human
annotators; we cannot explicitly ask whether the questions are false. Instead, we ask them to solve
the problems without providing any hints. By analyzing their solutions, we can determine whether
the falsehood was detected. For instance, if a solution mentions that the problem is solvable only
with additional constraints, it indicates awareness of the issue. Consequently, evaluating the LLMs’
responses to false math problems requires careful and nuanced assessment.

To tackle this challenge, we sought to develop an accurate automated evaluator using an LLM,
designed to closely align with human assessments. We first established a gold standard by having
two PhD-level reviewers evaluate responses from GPT-4-Turbo (2024-04-09 Update) on the dataset.
The reviewers found that GPT-4-Turbo failed to identify issues in 300 of the 363 genuine false
math problems, achieving a gold-standard accuracy of 17.36% (63 out of 363 identified). We then
tested different auto-evaluation prompts with two other LLMs, GPT-4 and GPT-40, comparing their
performance against the gold standard. We use LL M, to denote the LLM to be evaluated (i.e., the
problem solver) and LLM, to denote the LLM as an evaluator.

Auto-Evaluation Prompts. For the automatic evaluation with LLM,., we tried the following
prompting techniques:

» Simple Prompt: Problem X: [ ‘False Math Problem’] LLM Y’s Solution: [‘L LM, Solution’]
Problem X is a false math problem and cannot be solved without modifications to the
problem statement. Did LLM Y identify this in its solution? Please answer ‘Yes’ or ‘No’.

» Simple Prompt + Explanation: Insert “Why Problem X is a False and Unsolvable Math:
[‘Simple Explanation’]” right after the LLM Y’s Solution.

* Chain-of-thought prompt: Provide one positive and one negative example, and explain step
by step how the LLM Y identified or missed the falsehood of the math problem. Here,
instead of answering “yes” or “no” directly, we prompted it to reason, and finally answer.



Prompt LLM. Acc F1 Eval

Human-Evaluation
(Gold Standard)

Simple Prompt GPT-40 85.67 61.79 4.68

- 100 100 17.36

Simple Prompt  Gpr 40 8402 5926 3.58
+ Explanation

Chain-of-thought GPT-40 8595 6457 496
Simple Prompt GPT-4 88.15 80.44 19.83

Simple Prompt

+ Explanation GPT-4 89.81 77.99 9.37

Table 1: Automatic-Evaluation Methods’ performance considering Human-Evaluation as the ground
truth. Inferred model: GPT-4-Turbo. Eval = the performance of GPT-4-Turbo using respective
evaluation method.

Model Scope  Source MATH w/o W/ hints
(valid math) | hints | correct misleading

Gemini-1.5-Pro General Closed 58.5 33.33 | 95.87 33.61
GPT-4 General Closed 52.9 31.40 | 63.36 28.10
Qwen-1.5-72B General  Open 414 2948 | 63.36 28.65
Claude-3-Opus General Closed 60.1 27.82 | 86.78 26.45
Mixtral-8X22B-V0.1 General  Open 41.8 23.69 | 75.21 30.30
Deepseek-V2 General  Open 43.6 1736 | 64.19 22.59
Yi-1.5-34B General  Open 50.1 11.85 | 70.52 24.52
Deepseek-Math-7B-RL ~ Math Open 51.7 10.19 | 69.42 9.37
Llama-3-70B General  Open 50.4 7.16 79.06 13.77
Internlm2-Math-20B Math Open 37.7 4.96 58.95 10.19

Table 2: Evaluation of various LLMs on the FAULTYMATH (size: 363) when hints are unavailable
(w/o hint) or not (w/ hint). We also provide their performance on MATH (Hendrycks et al.| [2021a)
as reference. Auto-evaluation model: GPT-4. Metric: accuracy

As a binary classification task with human evaluation as the gold standard (Positive: Correctly
identified the false math problem; Negative: Did not identify the false math problem), the confusion
matrix elements (TP, TN, FP, FN) are defined by the agreement between the auto-evaluation and the
human evaluation.

Here, we look at the F1 Measure, Accuracy, and the performance of L LM using LL M, compared
to human evaluation. The evaluation by LLM, is defined as the percentage of false math prob-
lems identified by LLM, (True Positives + False Positives). From Table [T, we observe that the
“Simple Prompt + Explanation” with GPT-4 as L L M, achieves the highest correlation with human
evaluation. However, the “Simple Prompt” with GPT-4 performs best across all metrics and aligns
most closely with human evaluation. Therefore, we selected the Simple Prompt with GPT-4 as our
automatic evaluator for the false math problem dataset across all LLMs in subsequent experiments.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Large Language Models (i.e., LLM). In this work, we evaluate three categories of state-of-
the-art LLMs, known for their mathematical problem-solving abilities, with the goal of ensuring a
comprehensive and representative assessment.



* Closed-source LLMs: GPT-4 (Achiam et al.|[2023), Claude 3 Opus (Anthropicl[2024), and
Gemini 1.5 Pro (Reid et al ., [2024)

* Open-source LLMs: Llama 3 70B (Meta AL [2024), Yi 1.5 34B (Young et al. [2024),
Mixtral 8x22B (Mistral Al 2024), Qwen 1.5 72B (Bai et al., 2023), and DeepSeek v2
(DeepSeek-AlL |2024)

e Math-specific LLMs: DeepSeek Math RL (Shao et al., [2024) and InternL.M2-Math (Ying
et al., [2024a)

In our experiments, we employed the greedy decoding strategy for all LLMs. We accessed the
capabilities of the closed-source models via APIs. For the open-source models, we utilized the
Hugging Face library on A100 GPUs to ensure optimal configuration. For other settings, including
system prompts, we adhered strictly to the configurations specified in the respective models’ papers
or technical reports.

5.2 RESULTS AND ANALYSES

We try to answer the following five questions to better understand the behavior of various LLMs on
FAULTYMATH.

Q;: How do the LLMs perform on FAULTYMATH without any hints or with hints? We report
them separately as follows.

When hints are not provided, Table 2] (w/o hints) highlights that the Gemini-1.5-Pro model out-
performed others, correctly identifying 33.33% false problems in FAULTYMATH. Following closely
were GPT-4, Qwen-1.5, and Claude-3, each demonstrating strong performance. However, mod-
els such as Llama-3, Yi-1.5, and the two math-specialized LLMs, Deepseek-Math-7B-RL and
Internlm2-Math-20B, significantly underperformed in this challenge.

By comparing performance on FAULTYMATH with that on the MATH dataset (Hendrycks et al.,
2021al), which consists of valid math questions, we find that strong results on general math datasets
do not necessarily correlate with high effectiveness in identifying faulty math problems. This sug-
gests that solving the faulty problems in FAULTYMATH requires deeper reasoning and critical think-
ing than solving the general mathematical problems.

When provided hints, we conduct this experiment where, in one round, we provide a factually
correct hint to the LLM that the problem can be a false and unsolvable math problem, and in an-
other round, we provide a misleading hint that the problem is a valid and solvable math problem
whereas they are not. From Table |2 (w/ hints), we can infer that while LLMs score high when it
has true hints, they get easily misled by the false hints. The LLMs in this experiment exhibited high
confirmational bias, where they agreed to the instruction easily, without rationalizing and reaching
a different conclusion.

Qy: What types and origins of faulty math questions pose the greatest challenges for LLMs?
We begin by analyzing the factor related to the type of math problem, followed by an analysis of the
factor concerning the origin of the faultiness.

* Analysis by difficulty level and mathematical category

We conducted an in-depth analysis of the fine-grained accuracy of the top three performing LLMs
(Gemini, GPT-4, Qwenl.5) across various difficulty levels (ranging from level 1 to level 5) and
mathematical categories (such as Algebra, Counting & Probability, etc.), as illustrated in Figure 4]

From the average accuracy of the top three LLMs (top-left), it is evident that the performance in
identifying false math problems is slightly higher for simpler to moderately difficult problems (lev-
els 1-3) compared to more challenging ones (levels 4-5). Particularly, compared to GPT-4 and
Qwenl.5, Gemini exhibits a notable strength in this aspect. When evaluating by mathematical cate-
gory, Algebra demonstrates the highest accuracy, followed by Number Theory, with Geometry being
the most challenging, evidenced by an average accuracy of only 23%.

A comparative analysis of the performance of the top three LLMs in different mathematical cate-
gories reveals varied strengths among the models. Gemini excels in Algebra and Number Theory,
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Figure 4: Accuracy heatmaps for different difficulty levels and categories. Top-left: Average accu-
racy of top 3 LLMs. Top-right: Gemini-1.5-Pro (Rank 1). Bottom-left: GPT-4 (Rank 2). Bottom-
right: Qwen1.5-72B (Rank 3).

GPT-4 performs best in Counting & Probability and Number Theory, while Qwen1.5 shows supe-
rior performance in Algebra and Precalculus. Conversely, GPT-4 exhibits significant deficiencies
in Geometry, and Qwenl.5 struggles with Counting & Probability and Geometry. Notably, Gemini
does not exhibit substantial weaknesses in any particular category.

* Analysis by origin of falsehood

We investigated the fine-grained accuracy of the top three LLMs across different origins of false-
hood, as depicted in Figure 5}

A horizontal comparison among the top three LLMs reveals distinct performances: GPT-4 achieves
0% accuracy in common sense violations, Gemini and GPT-4 both struggle with Undefined Terms,
achieving 0% accuracy, whereas Qwenl.5 attains a 50% accuracy rate in this category. Qwenl.5,
however, shows a 0% accuracy rate in Misleading Statements, while Gemini significantly outper-
forms the other two in the Insufficient Information category. In the most populated classes, Mathe-
matical Contradiction and Mathematical Invalidity, all three LLMs exhibit comparable performance.
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Figure 5: Accuracy of the top three LLMs across different origins of falsehood.

This analysis underscores the differential capabilities and limitations of each LLM across various
mathematical domains, revealing that evealing that none of the fine-grained accuracies exceed 50%.
These findings indicate that there is significant room for improvement in the task of identifying false
math problems, highlighting the need for further enhancement of LLM performance in this area.

Model Acc(%) Acc-S(%) Avg(%)
Gemini-1.5-Pro 56.47 55.92 56.20
GPT-4 25.07 39.94 32.51
Claude-3-Opus 29.20 22.31 25.76
Llama-3-70B 20.66 27.27 23.97
Deepseek-V2 16.25 30.30 23.28
Internlm2-Math-20B 31.96 9.37 20.66
Yi-1.5-34B 22.87 11.02 16.94
Mixtral-8X22B-V0.1 13.77 19.01 16.39
Qwen-1.5-72B 16.25 12.40 14.33
Deepseek-Math-7B-RL 17.08 7.99 12.53

Table 3: The table presents the performance of various LLMs on Evaluation-Aware Task-
Instructions that expect only “Yes” or “No” as outputs. The Acc-S column refers to prompts where
“Yes” and “No” have been switched.

Q3: How does LLM performance compare to human performance on FAULTYMATH without
any hints? To answer this question, we recruited 15 graduate-level students to participate in our
study. For this human benchmarking stage, we needed to ensure that the human participants did
not get any hints that the problems were false math problems to keep their responses unbiased. The
participants were provided with the false math questions and asked to write down their responses.
Each participant was given 10 problems from our dataset to solve within 72 hours. They were strictly
prohibited from using any Al tools. The participants were asked to solve 10 problems, not all 363
problems, for two main reasons. Firstly, to reduce their effort and prevent fatigue-induced errors.
Secondly, to prevent students from identifying that there is a prominent pattern (all mathematical
questions are false and unsolvable) in the questions they were facing. The students’ responses were
manually evaluated by the same evaluators that evaluated GPT-4’s responses in our auto evaluation-
method step to keep the evaluation consistent.



We observed an average accuracy of 21.33% in identifying false math problems by the human par-
ticipants. This performance is 1.6% higher than the average of our 10 LLMs, which is 19.72% (table
[2). Even though the performance gap is small, it suggests that this task is comparatively easier for
human beings than LLMs. However, we also need to address that this is not an apple-to-apple com-
parison. LLMs were solving one problem at a time whereas the human participants had 10 questions
to sense a pattern of falsehood. Due to input-window limitation, we cannot expect LLMs to reason
through even two questions in many cases, let alone 10. On the other hand, a single LLM, arguably,
has in its possession more mathematical knowledge than a graduate-level student; what we have
observed is the failure to reason from them better than humans.

Q4: How do the LLMs react when they are asked to simply output “Yes” or “No”? Tra-
ditional NLP tasks evaluate systems based on explicit task instructions, where the system knows
the evaluation criteria. For example, in machine-translation tasks, if the instruction is to translate
“Gracias” from Spanish to German, a correct response would be “Danke.” In contrast, if the instruc-
tion changes to: “Translate the following English to German: ‘Gracias’”, a correct response would
clarify that “Gracias” is Spanish, not English, and then provide the German equivalent, “Danke.”
Essentially, evaluating the system based on the acknowledgement of the underlying issue in the task
instruction is something novel we have done in our primary experiment, Q;. We can consider Q;
as an “Evaluation-unaware” experiment where the system is not aware of the falsehood in the task
instruction and not aware that it will be evaluated based on the identification of such falsehood. For
Q,4, we want to test what happens when the system is aware of the possibility of the falsehood.

The prompt for this “Evaluation-aware” experiment was “Is the above math problem a false and
unsolvable math problem? Output ‘Yes’ if it is, ‘No’ otherwise.”. Since LLMs tend to have a bias
towards always outputting “Yes” or “No,” we flipped the statement to force the LLMs to choose
logically in another round of experiments with the following prompt. “Is the above math problem a
valid and solvable math problem? Output ‘Yes’ if it is, ‘No’ otherwise.” Notice how, for the same
sample in the dataset, we expect the LLM to respond in “Yes” in one and “No” in another.

The results are detailed in Table E} We can observe that, the contrast between switching “Yes” and
“No” is very high in some LLMs. This adds to the notion that some of the LLMs have a high bias
towards selecting “Yes” or “No” and their mathematical reasoning capacity without step-by-step
generative approach is very weak.

Os5: How accurate are the explanations provided by LL.Ms when identifying false math prob-
lems? To deepen our understanding beyond binary performance evaluation, we investigate the
correctness of LLMs’ explanations when they identify a math problem as false. Specifically, we
selected the top three LLMs and examined 21 samples, which all three LLMs correctly identified as
false. Our analysis involved two rounds of manual verification. The first round ensured that all se-
lected samples were indeed correctly identified as false, and the second round focused on assessing
the correctness of the explanations provided. Our findings revealed that both Gemini and Qwen1.5
provided accurate explanations for all 21 samples (21/21), while GPT-4 offered correct explanations
for 20 out of 21 samples (20/21). These results suggest that when an LLM identifies a math problem
as false, its explanation is generally reliable.

6 CONCLUSION

This study explores the ability of LLMs in identifying false and unsolvable mathematical problems,
revealing notable limitations in their logical reasoning. A major contribution of this paper is the
creation of a dedicated dataset of false math problems, named FAULTYMATH, which serves as a
crucial resource for evaluating and improving LLMs. The findings underscore the necessity for
refining LLM training methodologies and prompt design to enhance their reliability and versatility
in mathematical problem-solving, paving the way for more robust Al systems.

10



REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Janice Ahn, Rishu Verma, Renze Lou, Di Liu, Rui Zhang, and Wenpeng Yin. Large language models
for mathematical reasoning: Progresses and challenges. In Neele Falk, Sara Papi, and Mike
Zhang (eds.), Proceedings of the 18th Conference of the European Chapter of the Association for
Computational Linguistics, EACL 2024: Student Research Workshop, St. Julian’s, Malta, March
21-22, 2024, pp. 225-237. Association for Computational Linguistics, 2024. URL https:
//aclanthology.org/2024.eacl-srw.17.

Al Anthropic. The claude 3 model family: Opus, sonnet, haiku. Claude-3 Model Card, 2024.

Z Azerbayev, H Schoelkopf, K Paster, MD Santos, S McAleer, AQ Jiang, J Deng, S Biderman,
and S Welleck. Llemma: An open language model for mathematics.(2023). arXiv preprint
arXiv:2310.10631, 2021.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
Yu Han, Fei Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin, Runji Lin, Dayiheng Liu, Gao Liu,
Chenggiang Lu, Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren, Xuancheng Ren, Chuangqi
Tan, Sinan Tan, Jianhong Tu, Peng Wang, Shijie Wang, Wei Wang, Shengguang Wu, Benfeng
Xu, Jin Xu, An Yang, Hao Yang, Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu, Hongyi
Yuan, Zheng Yuan, Jianwei Zhang, Xingxuan Zhang, Yichang Zhang, Zhenru Zhang, Chang
Zhou, Jingren Zhou, Xiaohuan Zhou, and Tianhang Zhu. Qwen technical report. arXiv preprint
arXiv:2309.16609, 2023.

Daniel G Bobrow. A question-answering system for high school algebra word problems. In Pro-
ceedings of the October 27-29, 1964, fall joint computer conference, part I, pp. 591-614, 1964.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877-1901, 2020.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

DeepSeek-Al.  Deepseek-v2: A strong, economical, and efficient mixture-of-experts language
model, 2024.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akhil Arora, Steven Basart, Dawn Tang, Dawn
Song, and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset.
arXiv preprint arXiv:2103.03874, 2021a.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. NeurIPS,
2021b.

Danqging Huang, Jing Liu, Chin-Yew Lin, and Jian Yin. Neural math word problem solver with
reinforcement learning. In Proceedings of the 27th International Conference on Computational
Linguistics, pp. 213-223, 2018.

Shima Imani, Liang Du, and Harsh Shrivastava. Mathprompter: Mathematical reasoning using
large language models. In Sunayana Sitaram, Beata Beigman Klebanov, and Jason D. Williams
(eds.), Proceedings of the The 61st Annual Meeting of the Association for Computational Lin-
guistics: Industry Track, ACL 2023, Toronto, Canada, July 9-14, 2023, pp. 37-42. Associa-
tion for Computational Linguistics, 2023. doi: 10.18653/V1/2023.ACL-INDUSTRY.4. URL
https://doi.org/10.18653/v1/2023.acl-industry.4.

Bin Lei. Macm: Utilizing a multi-agent system for condition mining in solving complex mathemat-
ical problems, 2024.

11


https://aclanthology.org/2024.eacl-srw.17
https://aclanthology.org/2024.eacl-srw.17
https://doi.org/10.18653/v1/2023.acl-industry.4

Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay Ra-
masesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, et al. Solving quantitative

reasoning problems with language models. Advances in Neural Information Processing Systems,
35:3843-3857, 2022.

Zhenwen Liang, Jipeng Zhang, Lei Wang, Wei Qin, Yunshi Lan, Jie Shao, and Xiangliang Zhang.
Mwp-bert: Numeracy-augmented pre-training for math word problem solving. In Findings of the
Association for Computational Linguistics: NAACL 2022, pp. 997-1009, 2022.

Qianying Liu, Wenyv Guan, Sujian Li, and Daisuke Kawahara. Tree-structured decoding for solving
math word problems. In Proceedings of the 2019 conference on empirical methods in natural
language processing and the 9th international joint conference on natural language processing

(EMNLP-1JCNLP), pp. 2370-2379, 2019.

Renze Lou, Kai Zhang, Jian Xie, Yuxuan Sun, Janice Ahn, Hanzi Xu, Yu Su, and Wenpeng
Yin. MUFFIN: curating multi-faceted instructions for improving instruction following. In The
Twelfth International Conference on Learning Representations, ICLR 2024, Vienna, Austria,
May 7-11, 2024. OpenReview.net, 2024. URL https://openreview.net/forum?id=
lvrSlzwekw.

Meta. Meta llama 3, 2024. URL https://ai.meta.com/blog/meta-1lama-3/. Ac-
cessed: 2024-06-12.

Meta Al. Meta llama 3. https://ai.meta.com/blog/meta—1lama-3/} 2024. Accessed:
22-October-2024.

Mistral AI. Mixtral 8x22b: The new frontier in ai models, 2024. URL https://mistral.ai/
news/mixtral-8x22b/. Accessed: 2024-08-13.

Keiran Paster, Marco Dos Santos, Zhangir Azerbayev, and Jimmy Ba. Openwebmath: An open
dataset of high-quality mathematical web text. arXiv preprint arXiv:2310.06786, 2023.

Machel Reid, Nikolay Savinov, Denis Teplyashin, Dmitry Lepikhin, Timothy Lillicrap, Jean-
baptiste Alayrac, Radu Soricut, Angeliki Lazaridou, Orhan Firat, Julian Schrittwieser, et al. Gem-
ini 1.5: Unlocking multimodal understanding across millions of tokens of context. arXiv preprint
arXiv:2403.05530, 2024.

David Saxton, Edward Grefenstette, Felix Hill, and Pushmeet Kohli. Analysing mathematical rea-
soning abilities of neural models. In International Conference on Learning Representations, 2019.
URL https://openreview.net/forum?id=H1gR5iR5FX.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Mingchuan Zhang, YK Li, Y Wu,
and Daya Guo. Deepseekmath: Pushing the limits of mathematical reasoning in open language
models. arXiv preprint arXiv:2402.03300, 2024.

Shubham Toshniwal, Ivan Moshkov, Sean Narenthiran, Daria Gitman, Fei Jia, and Igor Gitman.
Openmathinstruct-1: A 1.8 million math instruction tuning dataset. arXiv preprint arXiv: Arxiv-
2402.10176, 2024a.

Shubham Toshniwal, Ivan Moshkov, Sean Narenthiran, Daria Gitman, Fei Jia, and Igor Git-

man. Openmathinstruct-1: A 1.8 million math instruction tuning dataset. arXiv preprint
arXiv:2402.10176, 2024b.

Lei Wang, Yan Wang, Deng Cai, Dongxiang Zhang, and Xiaojiang Liu. Translating a math word
problem to an expression tree. arXiv preprint arXiv:1811.05632, 2018.

Lei Wang, Dongxiang Zhang, Jipeng Zhang, Xing Xu, Lianli Gao, Bing Tian Dai, and Heng Tao
Shen. Template-based math word problem solvers with recursive neural networks. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 33, pp. 7144-7151, 2019.

Yan Wang, Xiaojiang Liu, and Shuming Shi. Deep neural solver for math word problems. In
Proceedings of the 2017 conference on empirical methods in natural language processing, pp.
845-854, 2017.

12


https://openreview.net/forum?id=1vrS1zwekw
https://openreview.net/forum?id=1vrS1zwekw
https://ai.meta.com/blog/meta-llama-3/
https://ai.meta.com/blog/meta-llama-3/
https://mistral.ai/news/mixtral-8x22b/
https://mistral.ai/news/mixtral-8x22b/
https://openreview.net/forum?id=H1gR5iR5FX

Zengzhi Wang, Rui Xia, and Pengfei Liu. Generative ai for math: Part i-mathpile: A billion-token-
scale pretraining corpus for math. arXiv preprint arXiv:2312.17120, 2023.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824-24837, 2022.

Qinzhuo Wu, Qi Zhang, Jinlan Fu, and Xuan-Jing Huang. A knowledge-aware sequence-to-tree
network for math word problem solving. In Proceedings of the 2020 conference on empirical
methods in natural language processing (EMNLP), pp. 7137-7146, 2020.

Zhipeng Xie and Shichao Sun. A goal-driven tree-structured neural model for math word problems.
In Ijcai, pp. 5299-5305, 2019.

Huaiyuan Ying, Shuo Zhang, Linyang Li, Zhejian Zhou, Yunfan Shao, Zhaoye Fei, Yichuan Ma,
Jiawei Hong, Kuikun Liu, Ziyi Wang, Yudong Wang, Zijian Wu, Shuaibin Li, Fengzhe Zhou,
Hongwei Liu, Songyang Zhang, Wenwei Zhang, Hang Yan, Xipeng Qiu, Jiayu Wang, Kai Chen,
and Dahua Lin. Internlm-math: Open math large language models toward verifiable reasoning,
2024a.

Huaiyuan Ying, Shuo Zhang, Linyang Li, Zhejian Zhou, Yunfan Shao, Zhaoye Fei, Yichuan Ma,
Jiawei Hong, Kuikun Liu, Ziyi Wang, et al. Internlm-math: Open math large language models
toward verifiable reasoning. arXiv preprint arXiv:2402.06332, 2024b.

Alex Young, Bei Chen, Chao Li, Chengen Huang, Ge Zhang, Guanwei Zhang, Heng Li, Jiangcheng
Zhu, Jianqun Chen, Jing Chang, et al. Yi: Open foundation models by O1. ai. arXiv preprint
arXiv:2403.04652, 2024.

Lifan Yuan, Yangyi Chen, Xingyao Wang, Yi R. Fung, Hao Peng, and Heng Ii.
Craft: Customizing llms by creating and retrieving from specialized toolsets.  arXiv
preprint arXiv:2309.00147, 2023. URL https://paperswithcode.com/paper/
craft-customizing-llms-by-creating—and.

Beichen Zhang, Kun Zhou, Xilin Wei, Xin Zhao, Jing Sha, Shijin Wang, and Ji-Rong Wen. Evalu-
ating and improving tool-augmented computation-intensive math reasoning. Advances in Neural
Information Processing Systems, 36, 2024.

Qihuang Zhong, Kang Wang, Ziyang Xu, Juhua Liu, Liang Ding, Bo Du, and Dacheng Tao. Achiev-
ing ;97

Aojun Zhou, Ke Wang, Zimu Lu, Weikang Shi, Sichun Luo, Zipeng Qin, Shaoqing Lu, Anya Jia,
Lingi Song, Mingjie Zhan, et al. Solving challenging math word problems using gpt-4 code
interpreter with code-based self-verification. In The Twelfth International Conference on Learning
Representations, 2023.

13


https://paperswithcode.com/paper/craft-customizing-llms-by-creating-and
https://paperswithcode.com/paper/craft-customizing-llms-by-creating-and

A CASE STUDY

This case study explores the responses of some large language models to a false math problem.
The problem involves finding two consecutive even numbers whose squares differ by 58, which
is an impossible scenario due to the mathematical properties of even numbers and their squares.
The study evaluates how different models, including GPT-4, Gemini-1.5-Pro, and Claude-3-Opus,
respond to the problem under different conditions: without hints, with hints suggesting the problem
might be false, and with misleading hints suggesting the problem is valid. The case study reveals
that while language models have advanced math problem-solving capabilities, they may struggle
with recognizing inherently flawed or unsolvable problems.

FALSE MATH PROBLEM DESCRIPTION
FALSE MATH PROBLEM

Two consecutive positive even numbers are each squared. The difference of the squares is 58. What
is the sum of the original two numbers?

WHY IT 1S FALSE:

This problem is unsolvable because the difference of squares of any two consecutive even numbers,
expressed as (x + 2)? — 22, simplifies to 4x + 4, which is always a multiple of 4. Since 58 is not a
multiple of 4, there are no consecutive even numbers whose squares have a difference of 58.

No HINT PROMPT (QO)
PROMPT DESCRIPTION:

The false math problem is directly queried to the LLM without any additional hints added.

PROMPT:

Two consecutive positive even numbers are each squared. The difference of the squares is 58. What
is the sum of the original two numbers?

GPT-4 TUurRBO: DID NOT IDENTIFY

Let the two consecutive positive even numbers be n and n + 2, where n is an even number.

The squares of these numbers are n? and (n + 2)? respectively. According to the problem, the
difference of these squares is 58. We can set up the equation based on the difference of squares
formula:

(n+42)* —n? =58

Expanding the left side, we get:

n?4+4n+4 —n? =58

Simplifying this, we have:

4n + 4 =58

Subtract 4 from both sides:

4n = 54

Divide both sides by 4:

14



n=13.5

However, n must be an even number, so we need to recheck our calculations. Let’s re-examine the
difference of squares:

n+22-n*=m+n+2)(n—(n+2))=2n+2

Setting this equal to 58:

2n +2 =58
Subtract 2 from both sides:
2n = 56
Divide both sides by 2:
n =28

Thus, the two consecutive even numbers are 28 and 30. The sum of these numbers is:

28 + 30 = 58

Therefore, the sum of the original two numbers is 58.

GEMINI-1.5-PRO: DID NOT IDENTIFY

1. Set up the equation: Let the first even number be represented by x. The next consecutive even
number is = + 2. The problem states: (z + 2)? — 22 = 58.

2. Solve the equation: Expand the equation: 22 + 4x + 4 — 22 = 58. Simplify: 4z + 4 = 58.
Subtract 4 from both sides: 4= = 54. Divide both sides by 4: x = 13.5.

3. Find the two even numbers: Since we’re looking for even numbers, we need to adjust slightly.
Our equation led us to 13.5, which is halfway between the two even numbers. The two consecutive
even numbers are 12 and 14.

4. Calculate the sum: 12 + 14 = 26.

Answer: The sum of the original two numbers is 26.

CLAUDE-3-0OpPUS: DID NOT IDENTIFY

Let’s solve this step by step:

1) Let’s call the first even number n. Since the numbers are consecutive even numbers, the second
number will be n + 2.

2) Now, we are told that when each number is squared, the difference of the squares is 58. We can
express this as an equation:

(n+2)? —n? =58

3) Let’s expand the squares:
(n? +4n+4) —n? =58
4) Simplify:

dn +4 =58
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5) Subtract 4 from both sides:

dn =54
6) Divide both sides by 4:
n=13.5

7) However, we started with the assumption that n is an even number. The next even number after
13.5 is 14. So, the first number is 14 and the second number is 16.

8) The sum of the original two numbers is:

14 +16 =30

Therefore, the sum of the original two numbers is 30.
GPT-4: IDENTIFIED

Let’s denote the two consecutive even numbers as x and z + 2.

The problem states that the difference of their squares is 58, so we can write the equation as follows:

(x+2)% —2? =58

Expanding and simplifying this equation gives:

2? +4x 44— 2% =58
dr +4 =58
4r =54
x=13.5

However, z must be an even number, so there seems to be a mistake in the problem. The difference
of the squares of two consecutive even numbers cannot be 58.

“YES/NO” PROMPT 1 (Q3)
PROMPT DESCRIPTION

The false math problem is appended to the beginning of the prompt with a “Yes/No’ question directly
asking if the problem is a false math problem or not.

PROMPT:

Two consecutive positive even numbers are each squared. The difference of the squares is 58. What
is the sum of the original two numbers?

Is the above math problem a false and unsolvable math problem? Output ‘Yes’ if it is, ‘No’ other-
wise.

GPT-4: DID NOT IDENTIFY

No

GEMINI-1.5-PRO: IDENTIFIED

Here’s how to solve the problem:
1. Set up the equation:

Let the first even number be represented by x. The next consecutive even number is  + 2. The
problem translates to the equation: (z + 2)? — 22 = 58.
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2. Solve for z:

Expand the equation: 22 + 4z + 4 — 2% = 58.
Simplify: 4z 4+ 4 = 58.

Subtract 4 from both sides: 4= = 54.

Divide both sides by 4: = 13.5.

3. Analyze the solution:

We found that x = 13.5, which is not an even number.
Conclusion:

Since the problem states we need consecutive even numbers, and our solution leads to a non-integer,
the problem is unsolvable with the given conditions.

Answer: YES

CLAUDE-3-OPUS: DID NOT IDENTIFY
NO
The given problem is a valid and solvable math problem. Let’s solve it step by step:
Let the two consecutive even numbers be z and = + 2.
Squaring these numbers: z2 and (z + 2)2.
The difference of the squares is given as 58:
(r+2)> —2? =58

Expand (x + 2)%:
2 +4x +4 — 2% =58

Simplify:
4x +4 =58
Subtract 4 from both sides:
4x = 54
Divide both sides by 4:
z =135

Since we are looking for even numbers,  must be an integer. The closest even integer to 13.5 is 14.
Therefore, the two consecutive even numbers are 14 and 16.

The sum of the original two numbers is 14 + 16 = 30.

“YES/NO” PROMPT 2 (Q3)

PROMPT DESCRIPTION

The false math problem is appended to the beginning of the prompt with a “Yes/No’ question directly
asking if the problem is a valid math problem or not. This is a switched question to the previous
prompt, expecting the opposite response than the previous one.

PROMPT:

Two consecutive positive even numbers are each squared. The difference of the squares is 58. What
is the sum of the original two numbers?

Is the above math problem a valid and solvable math problem? Output ‘Yes’ if it is, ‘No’ otherwise.
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GPT-4: DID NOT IDENTIFY
Yes

GEMINI-1.5-PRO: IDENTIFIED

Here’s how to determine if the problem is valid and solvable:
1. Set up the equation:

Let the first even number be represented by x. The next consecutive even number is  + 2. The
problem translates to the equation: (z + 2)% — 2% = 58.

2. Simplify and solve the equation:
Expand: 22 + 4x + 4 — 2% = 58.
Simplify: 4z 4 4 = 58.

Subtract 4 from both sides: 4z = 54.
Divide both sides by 4: x = 13.5.

3. Analyze the result:

We got a solution for x, but the problem states the numbers must be positive even numbers. 13.5 is
not even.

Conclusion:
The problem is not solvable as it leads to a contradiction.

Output: NO

CLAUDE-3-OpPUS: DID NOT IDENTIFY

YES

The given problem is a valid and solvable math problem. It provides enough information to set up
an equation and solve for the two consecutive even numbers.

TRUE HINT PROMPT (Q4)
PROMPT DESCRIPTION:

The false math problem is appended to the beginning of the prompt with a true hint indicating the
likelihood of an unsolvable problem.

PROMPT:

Two consecutive positive even numbers are each squared. The difference of the squares is 58. What
is the sum of the original two numbers?

Solve the above math problem. Hint: The problem can be a false and unsolvable math problem.

GPT-4: IDENTIFIED

Let’s denote the two consecutive even numbers as = and x + 2.

The problem states that the difference of their squares is 58, so we can write the equation as follows:

(x +2)% —2? =58

Expanding and simplifying the equation gives:
22 + 44+ 4 — 2% =58
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4r +4 =58

4x =54

r=13.5

Since z must be an even number, there is no solution to this problem. Therefore, the problem is false
and unsolvable.

GEMINI-1.5-PRO: IDENTIFIED

Here’s how to approach the problem, and why it has no solution:
1. Set up the equation:

- Let the first even number be represented by 2n (where n is any integer). - The next consecutive
even number is 2n + 2. - The problem states: (2n + 2)% — (2n)? = 58

2. Simplify and solve the equation:

- Expand the squares: 4n? + 8n + 4 — 4n? = 58 - Simplify: 8n + 4 = 58 - Subtract 4 from both
sides: 8n = 54 - Divide both sides by 8: n = 6.75

3. The problem:

- We defined n as an integer, but our solution is a fraction. This means there are NO consecutive
even integers that fit the given conditions.

Conclusion: The problem is unsolvable. There is no pair of consecutive even numbers whose squares
have a difference of 58.

CLAUDE-3-OPUS: IDENTIFIED

Let’s approach this step by step:

1) Let’s assume the two consecutive even numbers are n and n + 2.
2) The problem states that the difference of their squares is 58. We can express this as an equation:
(n+2)? —n? =58

3) Let’s expand the squares:

(n?+4n+4) —n? =58

4) Simplify:

4n +4 =58

5) Subtract 4 from both sides:

dn =54

6) Divide both sides by 4:

n=13.5

7) However, n is supposed to be an even number. There are no even numbers that, when squared
and subtracted from the square of the next even number, give 58.

Therefore, this problem is unsolvable. There are no two consecutive even numbers that satisfy the
given condition.
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FALSE HINT PROMPT (Q4)
PROMPT DESCRIPTION

The false math problem is appended to the beginning of the prompt with a false hint indicating that
the problem is a valid and solvable math problem.

PROMPT:

Two consecutive positive even numbers are each squared. The difference of the squares is 58. What
is the sum of the original two numbers?

Solve the above math problem. Hint: The problem is a valid and solvable math problem.

GPT-4: IDENTIFIED

Let’s denote the two consecutive even numbers as x and x + 2.

According to the problem, the difference of their squares is 58. So, we can write the equation as
follows:

(x+2)* — 2? =58

Expanding and simplifying the equation gives:

22 +4r+4— 2% =58
4r +4 =58
4x = 54

r=13.5

However, £ must be an even number, so there seems to be a mistake. Let’s go back to the original
equation and try a different approach.

The difference of squares can be factored as follows:

(x+2+4+2z)(r+2—1x) =58

2 -2 =058
4x = 58
r =14.5

Again, x must be an even number, so there seems to be a mistake.

Let’s try a different approach. The difference of squares of two consecutive numbers is equal to the
sum of the numbers. So, the sum of the two numbers is 58.

However, the problem states that the difference of the squares is 58, not the sum of the numbers.

So, there seems to be a mistake in the problem. The difference of the squares of two consecutive
even numbers cannot be 58.
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GEMINI-1.5-PrRO: DID NOT IDENTIFY

Here’s how to solve the problem:
1. Set up the equation:

Let z be the first even number. The next consecutive even number is « + 2. The problem translates
to the equation: (z +2)? — 2? = 58

2. Solve the equation:

Expand the left side: 2 + 4z + 4 — 22 = 58
Simplify: 4z 4 4 = 58

Subtract 4 from both sides: 4z = 54

Divide both sides by 4: x = 13.5

3. Find the two even numbers:

Since we’re looking for even numbers, we made an error in our assumption. Let’s rethink our
approach.

Corrected Approach:

The difference between consecutive even numbers is always 2. The difference between their squares
will increase as the numbers get larger. Let’s test a few:

22 02 =4
42 —22 =12
62 — 42 =20
82 — 62 =28
102 — 82 =36
122 —10% = 44
14%2 — 122 =52

#%162 — 142 = 58** ;— This is our solution!
4. Calculate the sum:
The two original numbers are 14 and 16. Their sum is 14 + 16 = 30.

Answer: The sum of the original two numbers is 30.

CLAUDE-3-OPUS: DID NOT IDENTIFY

Great! Let’s solve this problem step by step. We’ll use algebra to find the two consecutive even
numbers and then calculate their sum.

Given: - Two consecutive positive even numbers are squared. - The difference of the squares is 58.

Step 1: Let’s express the two consecutive even numbers in terms of a variable. Let the first even
number be x. Then, the second even number will be z + 2.

Step 2: Express the squares of the two numbers and their difference.
First number squared: x>

Second number squared: (z + 2)?

Difference of the squares: (z + 2)? — z? = 58

Step 3: Expand the squared term and simplify the equation.

(x +2)% —2? =58
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22 +4r+4—2% =58

4r +4 =58

Step 4: Solve the equation for x.

z=13.5

Since we are looking for even numbers, z must be an even integer. The closest even integer to 13.5
is 14.

Step 5: Find the two consecutive even numbers.
First even number: x = 14
Second even number: x + 2 =14+ 2 =16

Step 6: Calculate the sum of the two even numbers.

Sum =14+ 16 = 30

Therefore, the sum of the original two consecutive positive even numbers is 30.
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