
DySTAGE: Dynamic Graph Representation Learning for Asset
Pricing via Spatio-Temporal Attention and Graph Encodings

Jingyi Gu∗
New Jersey Institute of Technology

US
jg95@njit.edu

Junyi Ye∗
New Jersey Institute of Technology

US
jy394@njit.edu

Ajim Uddin
New Jersey Institute of Technology

US
ajim.uddin@njit.edu

Guiling Wang†
New Jersey Institute of Technology

US
gwang@njit.edu

Abstract
Current GNN-based asset price prediction models often focus on a
fixed group of assets and their static relationships within the finan-
cial network. However, this approach overlooks the reality that the
composition of asset pools and their interrelationships evolves over
time, necessitating the development of a flexible framework capable
of adapting to this dynamism. Accordingly, we propose DySTAGE,
a framework with a universal formulation that transforms asset
pricing time series into dynamic graphs, accommodating asset addi-
tion, deletion, and changes in correlations. Our framework includes
a graph learning model specifically designed for this purpose. In our
framework, assets at various historical time steps are structured as
a sequence of dynamic graphs, where connections between assets
reflect their long-term correlations. DySTAGE effectively captures
both topological and temporal patterns. The Topological Module
deploys Asset Influence Attention to learn global interrelationships
among assets, further enhanced by Asset-wise Importance Encod-
ing, Pair-wise Spatial Encoding, and Edge-wise Correlation Encoding.
Meanwhile, the Temporal Module encapsulates node representa-
tions across the temporal dimension via the attention mechanism.
We validate our approach through extensive experiments using
three different real-world stock pricing data, demonstrating that
DySTAGE surpasses popular benchmarks in return prediction, and
offers profitable investment strategies. The code is publicly available
under NJIT FinTech Lab’s GitHub1.

CCS Concepts
• Applied computing → Economics; • Computing method-
ologies → Neural networks; • Mathematics of computing →
Graph algorithms.
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1 Introduction
Asset pricing models are pivotal in estimating the future returns of
underlying assets such as stocks, by employing a multitude of vari-
ables to model their interactions [37]. These models are essential for
market participants who seek to discern potential high-performing
assets within the market universe. The assets in this universe are
interdependent through various dimensions such as supply chains,
industry sectors, return similarities, volatility spillovers, and mar-
ket conditions. These complex interrelationships significantly im-
pact their relative prices [26, 31]. Given these intricacies, graph
networks have become a preferred tool for modeling such relation-
ships [8, 16, 36]. Financial markets are inherently dynamic; assets
and their interconnections evolve continuously due to factors such
as new market entries, asset maturation, and corporate events like
bankruptcies, mergers, and acquisitions. This ongoing evolution
necessitates a dynamic representation in our models.

Figure 1 visually depicts the evolution of the market in terms
of asset participation and their interrelationships. Conceptualized
as a graph, each asset is represented as a node, and correlations
are depicted as edges. Nodes dynamically appear and disappear
from the asset graph, reflecting the fluid and responsive nature of
the market to real-world events. For instance, Lehman Brothers
was removed in October 2008 following its bankruptcy, while Tesla
was added in June 2010 with its IPO. Similarly, the connections
between assets—edges—also evolve, reflecting shifts in corporate
strategy and market conditions. A prime example is Apple, which,
upon launching Apple TV+ in 2019, pivoted from focusing solely
on hardware and software to entering the competitive streaming
service market, positioning itself as a rival to Netflix.

Despite numerous studies on network dynamics, there remains
a substantial gap in developing frameworks that can effectively
learn and represent the time-varying dynamics of financial markets.
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Figure 1: An example of dynamic graphs in asset pricing.

Recent advancements in graph-based asset pricing methodologies
have leveraged static graph structures to model relationships and
predict future asset prices [5, 30]. Meanwhile, dynamic graph rep-
resentation learning, commonly used in domains such as traffic,
social, and rating networks [1, 4, 24, 27], has been less frequently
applied in financial networks. These financial networks are distin-
guished by their evolving interdependencies, which add complexity
to their analysis.

To address this gap, we introduce a Dynamic graph represen-
tation learning model via Spatio-Temporal Attention and Graph
Encodings (DySTAGE), an end-to-end dynamic graph learning
framework designed to accurately reflect and predict market evo-
lution. We propose a universal formulation for dynamic graphs
tailored to asset pricing, constructing a sequence of dynamic graphs
from asset time series data that accommodate node (asset) addi-
tions and removals. Additionally, asset correlation over different
economically meaningful time scales are incorporated and reflected
as multiple edge features between the same pair of nodes. Subse-
quently, we design a graph learning model that employs attention
mechanisms and graph encodings enriched with financial insights
to predict the future excess returns of existing nodes, capturing
both topological and temporal patterns. This framework enhances
predictive accuracy and supports informed investment strategies
in a rapidly changing market.

The framework features a Topological Module and a Temporal
Module. The Topological Module individually processes structural in-
formation for each graph and comprises several components: Asset
Influence Attention, which delineates the global interrelationships
between assets; Asset-wise Importance Encoding, emphasizing the
broad market impact of individual assets; Pair-wise Spatial Encoding,
exploring intermediary assets and uncovering hidden connections;
and Edge-wise Correlation Encoding, revealing the evolution of re-
lationships between highly correlated assets. Following this, the
Temporal Module delves into the historical representations of each
asset across time, offering a detailed temporal analysis.

We conducted extensive experiments on three real-world datasets:
Russell-3000 monthly data, MLFI monthly data, and S&P 500 daily
data. The results demonstrate DySTAGE’s superior performance
in return prediction and portfolio optimization. Our contributions
can be summarized as follows:

(1) Introduction of DySTAGE, a novel dynamic graph represen-
tation learning framework for asset pricing, with formula-
tion accommodating dynamic asset composition and evolv-
ing edge connections, and model designed with financial
insights.

(2) Effective capture of both topological and temporal patterns,
utilizing graph encodings that reflect asset importance, hid-
den connections, and their evolving impact within the finan-
cial network.

(3) Proven superiority of DySTAGE over conventional and popu-
lar benchmarks in predictive accuracy, illustrating its efficacy
in balancing profit and risk for portfolio management.

The remainder of the paper is organized as follows: Section 2
reviews current research in asset pricing, Section 3 formulates the
problem addressed by our study, Section 4 details of DySTAGE
framework, Section 5 showcases the numerical results based on our
research questions. Finally, Section 6 provides the conclusion.

2 Related Works
Machine learning in asset pricing has evolved with advancements
in time series prediction, Graph Neural Networks for asset correla-
tions, and dynamic graphs for temporal market dynamics.

2.1 Time Series Model
Asset pricing has evolved from traditional models like ARIMA [22]
to advanced deep learning techniques [25] such as RNNs, LSTMs
[13, 28], and MLP-based models [38] like N-BEATS [23]. These
models, with complex structures like residual connections and
Transformer-like blocks, enhance forecasting accuracy by recog-
nizing complex temporal patterns. Multi-scale analysis techniques,
including Fourier transforms, wavelets, and downsampling, enrich
temporal modeling by examining stock behavior across various
time scales [10, 19]. Deep neural networks [11, 18] and Transformer-
based approaches [9, 12] with Multi-Scale Gaussian Priors model
financial trends from intraday fluctuations to long-term shifts. How-
ever, these models often overlook interactions and interdependen-
cies among financial time series, especially in stock price move-
ments.

2.2 Graph Models
Graph Neural Networks (GNNs) facilitate the mapping of spatial
connections among financial assets. Static graphs, with invariant
structures and variable node attributes, serve as the foundation
for this analysis. GNN approaches like GCN [17], GraphSAGE
[14], GAT [33], and UniMP [29] implement distinct aggregation
strategies to interpret complex graph structures. Studies have ex-
plored various relational frameworks through shareholding ratios,
ownership structures, sectoral similarities, and stock correlations
[6, 16, 30, 39]. While, they fall short in capturing dynamic market
dynamism, where firms constantly emerge and dissolve. Dynamic
graphs track evolving system dynamics by accommodating changes
in graph structure and node characteristics. Most works, such as
T-GCN [42], GCLSTM [4], and DY-GAP [30], maintain a fixed node
count despite dynamic linkages and node changes. Conversely, stud-
ies like DySAT [27] and EvolveGCN [24] address scenarios with
variable node counts, utilizing attention mechanisms and GCN
regularization to manage node embeddings in these complex envi-
ronments. Many of these models are designed for different domains
and require significant adaptation for financial time series. Addi-
tionally, most dynamic graph analyses, such as DyTed [41] and
DGIB [40], primarily target link prediction and struggle to extend
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Figure 2: The framework of DySTAGE. (1) Dynamic graph construction from time series (top right). (2) Dynamic graph learning
model: (a) Topological Module individually processing structural information for each graph (left), (b) Temporal Module
capturing historical representations across time (bottom right).

to regression tasks. Complex asset pricing models require handling
large spatio-temporal datasets with thousands of nodes and time
steps, underscoring the need for innovative approaches tailored to
financial markets dynamics.

3 Problem Formulation
The core challenge in asset pricing is to estimate the expected
future value of an asset based on the information currently available.
Research has consistently shown that the expected future value of
an asset is influenced by a combination of factors including asset-
specific characteristics, historical performance trends, real-time
news, and broader market dynamics [15, 30]. This study aims to
capture both the temporal dependencies and the spatial dynamics
of the market using a dynamic spatio-temporal graph model.

Our objective is to develop a model 𝑓 (·) that can accurately
predict future return for assets y𝑡+1 based on a sequence of his-
torical financial interconnection networks G = {G𝑡−𝑘 , ...,G𝑡 } and
corresponding asset characteristics X = {X𝑡−𝑘 , ...,X𝑡 }:

y𝑡+1 = 𝑓 (G𝑡−𝑘 , · · ·,G𝑡 ,X𝑡−𝑘 , · · ·,X𝑡−𝑘 , ;𝜃 ) (1)

where 𝑘 represents the window of historical data considered. This
formulation enables the model to utilize temporal data from past
periods and integrate it with spatial information from the asset
interconnections, capturing the dynamic interplay of market vari-
ables that affect asset pricing.

4 Methodology
Figure 2 shows the architecture of DySTAGE. It starts with a dy-
namic graph construction phase. Then it contains two key modules:
the topological module learns the structural information of each

graph independently; the temporal module generates node embed-
dings for each node by capturing its historical patterns along the
temporal dimension.

4.1 Dynamic Graph Construction
We consider the historical dynamic graphs G = {G𝑡−𝑘 , ...,G𝑡 } as a
sequence, where G𝑡 = (V𝑡 , E𝑡 ) represents an undirected graph at
time step 𝑡 , with 𝑛𝑡 (= |V𝑡 |) nodes (i.e., total number of assets at
time 𝑡 ) and𝑚𝑡 (= |E𝑡 |) edges. Let X𝑡 ∈ R𝑛𝑡×𝑑 denote node features,
where 𝑛𝑡 is the number of assets and 𝑑 is the feature dimension.
A𝑡 ∈ R𝑛𝑡×𝑛𝑡 is the adjacency matrix of graph G𝑡 , representing the
long-term interrelationship between assets. In this work, we utilize
Pearson Correlation on the historical excess returns to quantify the
graph connections:

A𝑡
𝑢,𝑣 =

{
𝜌𝑡𝑢,𝑣 |𝜌𝑡𝑢,𝑣 | > 𝛾

0 |𝜌𝑡𝑢,𝑣 | ≤ 𝛾
(2)

For any pair of assets 𝑢 and 𝑣 , if their absolute correlation 𝜌𝑡𝑢,𝑣
based on returns over the past 𝑤 time steps is larger than the
threshold 𝛾 ∈ (0, 1), they are considered to have a strong long-term
correlation and should be connected by an edge. Both positive and
negative correlations between assets are incorporated in a single
graph. E𝑡 ∈ R𝑚𝑡×𝑝 denotes edge attributes containing multi-scale
excess return correlations between assets, calculated from short-
term to long-term perspectives, where 𝑝 is the number of scales.
For monthly asset data, we choose scales of 3, 6, 12, 24, and 36 to
describe quarterly, semiannually, and yearly trends. For daily data,
we choose scales of 5, 10, 15, and 20 for weekly patterns. The target
of our problem is the excess return y𝑡+1 ∈ R𝑛𝑡+1 of all existing
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assets in the future time step 𝑡 + 1. Our primary objective is to train
a network that learns historical dynamic graphs G and predicts the
future excess return y𝑡+1.

To streamline implementation, we unify the node set across all
time steps into a shared set V , encompassing all appearing nodes,
irrespective of their addition or removal over time. Therefore, the
graphs, including their adjacency matrices A𝑡 ∈ R𝑛 and node
features X𝑡 ∈ R𝑛×𝑑 at all time step, contain the same nodes. If node
𝑢 does not exist at time step 𝑡 , then there does not exist an edge
between itself and any other nodes, and its feature x𝑡𝑢 ∈ R𝑑 = 0 is
also set to a zero vector.

4.2 Topological Module
To predict future asset returns, each historical graph G𝑡−𝑘 , . . . ,G𝑡

is individually fed into the Topological Module. G𝑡 represents the
asset interconnection network for that time point. Asset Influence
attention is utilized to describe interrelationship and their influ-
ences between assets based on their node features globally. To
fully investigate the structural information, we incorporate three
graph encodings derived from dynamic asset graphs from finan-
cial perspectives: Asset-wise Importance Encoding highlights the
importance of each asset and its potential impact on the market;
Pair-wise Spatial Encoding investigates the hidden connections
between assets; Edge-wise Correlation Encoding provides evolving
correlation between assets. The output of this module is a set of
node embeddings in the graph. The details of each of these en-
codings are discussed below. Note that the index of time step 𝑡 is
omitted in the remaining discussion in this module for simplicity.

4.2.1 Asset Influence Attention. Given the asset features X in the
input graph G, we follow the standard multi-head attention mecha-
nism [32] to design an asset influence attention and derive the atten-
tion matrix. Within each head, the input feature X is firstly mapped
into X∗ ∈ R𝑑×𝑑∗

, where superscript ·∗ indicates the topological
module, and 𝑑∗ denote the dimension in this module. Then it is pro-
jected by three learnable weight matricesW∗

𝑞,W∗
𝑘
,W∗

𝑉
∈ R𝑑

∗×𝑑∗
𝑘 ,

where 𝑑∗
𝑘
denotes the hidden dimension of each head. Then the

attention matrix Aℎ ∈ R𝑛×𝑛 is computed, where ℎ ∈ {1, ..., 𝐻 } and
𝐻 represents the number of heads, with each attention element
𝐴∗
𝑢,𝑣,ℎ

describing the influence of asset 𝑢 on asset 𝑣 :

A∗
ℎ
= M0

∗ ⊙ 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (
(X∗W∗

𝑞) (X∗W∗
𝑘
)⊤√︃

𝑑∗
𝑘

+M∞∗) (3)

Z = X∗ + [A∗
1 (X

∗W∗
𝑣), ...,A∗

𝐻 (X∗W∗
𝑣)]W∗

𝑜 (4)

For non-existing asset 𝑢, it should not exert influence and re-
lationship with other assets. To exclude the current non-existing
assets, we incorporate two mask matrices before and after the soft-
max activation function. Softmax activation operates on the row
sum of attention matrix. For negative mask matrix M∞∗ ∈ R𝑛×𝑛
with 𝑀∗

𝑖𝑢
= −∞, 𝑖 ∈ V , it ensures the column vector of asset 𝑢 is

masked out, yielding corresponding softmax results is 0. The zero
mask matrix M0

∗ ∈ R𝑛×𝑛 with 𝑀∗
𝑢 𝑗

= 0, 𝑗 ∈ V guarantees the
row vector of asset 𝑢 is masked out as a zero vector, ⊙ denotes the
element-wise multiplication.

Utilizing multiple heads facilitates the aggregation of diverse
embedding spaces. The embeddings from multiple attention heads
are concatenated together and mapped by𝑊𝑜 ∈ R𝐻𝑑∗×𝑑∗

to yield
the output embeddings Z ∈ R𝑛×𝑑∗

. Following the common practice,
we apply layer normalization [35] before attention and incorporate
skip connections after concatenating the heads, aiming at enhanc-
ing optimization efficiency [21, 34]. The Asset Influence Attention
can be treated as one layer and extended to multiple layers.

4.2.2 Asset-wise Importance Encoding. Unlike the position encod-
ing in the original transformer, which signifies the order of se-
quence, the nodes within the graph lack such inherent sequence.
However, it is crucial to identify the importance of each asset and
its potential impact within its sector or the broader financial mar-
ket. Such insights can be learned from the topological structure
of the graph. Therefore, we introduce an Importance Encoding
to capture asset-wise structural information. Specifically, for each
asset 𝑢, a higher node degree implies that the asset has a strong
correlation with a larger number of other assets, indicating its po-
tential market impact. Let D𝑢 denote the degree encoding of asset
𝑢, which is a learnable embedding vector determined by its de-
gree, and D ∈ R𝑛×𝑑 denote the degree encoding of all assets in the
graph. This encoding serves similarly as position encodings and is
added to node features before feeding into the attention mechanism.
Therefore, the X∗ in Eq.3 and Eq.4 can be replaced by X̃∗ = X∗ + D.

4.2.3 Pair-wise Spatial Encoding. In addition to the attention mech-
anism that comprehensively considers every pair of assets globally,
we complement the local information by extracting pair-wise struc-
ture insights from the graph, specifically targeting pairs of assets
that are connected by a path. When two assets are not directly
connected by an edge but a path exists between them, this indirect
connection implies that although the assets do not directly affect
each other, they are linked through intermediary assets, shared
market factors, or underlying economic dynamics. Analyzing these
paths between assets allows us to uncover hidden connections and
better understand the underlying structure of the financial market
network. In this study, we utilize the shortest path distance between
two assets as a key metric. This distance represents the most di-
rect route between assets, considering how far the influence can be
transmitted by the intermediary assets between them. Let S ∈ R𝑛×𝑛
denote the Pair-wise Spatial Encoding of the graph, where 𝑆𝑢,𝑣 is a
learnable scalar based on the shortest path distance between asset
𝑢 and asset 𝑣 . If no path exists between them, the shortest path
distance will be represented by a large value, representing they are
not reachable from each other. This encoding is then incorporated
as a piece of complementary information to the dot product in the
attention; therefore, the attention matrix can be modified:

A∗
ℎ
= M0

∗ ⊙ 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (
(X̃∗W∗

𝑞) (X̃∗W∗
𝑘
)⊤√︃

𝑑∗
𝑘

+ S +M∞∗) (5)

4.2.4 Edge-wise Correlation Encoding. Recall that the edge attributes
encapsulate multi-scale excess return correlation between assets.
For two assets exhibiting strong long-term correlations, leverag-
ing their edge attributes becomes imperative to reveal how their
relationship evolves over time. It provides insights into whether

391



DySTAGE: Dynamic Graph Representation Learning for Asset Pricing ICAIF ’24, November 14–17, 2024, Brooklyn, NY, USA

the correlation remains consistent or fluctuates across various time
frames, spanning from short-term to long-term durations.

𝐸𝑢,𝑣 =
1
𝑝

𝑝∑︁
𝑖

(c𝑢,𝑣w⊤
𝑒 )𝑖 , c𝑢,𝑣 =

{
E𝑢,𝑣 𝑖 𝑓A𝑢,𝑣 ≠ 0
0 𝑖 𝑓A𝑢,𝑣 = 0

(6)

A∗
ℎ
= M0

∗ ⊙ 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (
(X̃∗W∗

𝑞) (X̃∗W∗
𝑘
)⊤√︃

𝑑∗
𝑘

+ S + E +M∞∗) (7)

For a given pair of assets 𝑢 and 𝑣 , we first compute c𝑢,𝑣 ∈ R𝑝 . If
an edge exists between them, then c𝑢,𝑣 corresponds to their edge
attributes E𝑢,𝑣 ; otherwise, it defaults to a zero vector. Subsequently,
c𝑢,𝑣 is transformed by a learnable weight matrix 𝑤𝑒 ∈ R𝑝×𝑝 and
then averaged across the scale dimension. Similarly to the Pair-wise
Spatial Encoding, the Edge-wise Correlation Encoding E can be
seamlessly integrated into the attention matrix, complementing the
model’s understanding of asset interactions within the topological
framework.

4.3 Temporal Module
Given the sequence of graph inputs G = (G𝑡−𝑘 , ...,G𝑡 ), upon pass-
ing through the Topological Module, we obtain a sequence of out-
puts (Z𝑡−𝑘 , ...,Z𝑡 ). Each output embedding Z𝑡 comprises a set of
node embeddings z𝑡𝑢 corresponding to each node 𝑢 ∈ V , Thus, for
every node 𝑢, we obtain a sequence of historical node embeddings
H𝑢 = (z𝑡−𝑘𝑢 , ..., z𝑡𝑢 ) ∈ R𝑘×𝑑

∗
, encapsulating both global and local

structure information. The Temporal Module aims to investigate
patterns from the historical embeddings along the temporal dimen-
sion for each node individually. The node index 𝑢 is omitted in the
remaining discussion within this module for simplicity.

Similar to the Asset Influence Attention, we adopt the multi-head
attention mechanism to capture temporal dynamics. The input H
is firstly mapped by a weight matrices W★ ∈ R𝑑∗×𝑑★ , where su-
perscript ·★ indicates temporal module, and 𝑑★ denotes the hidden
dimension in this module. Leveraging the time step due to the
sequential nature of inputs, the position encoding is defined as
P ∈ R𝑘×𝑑★ where each P𝑡 ∈ R𝑑

★
is a learnable embedding vector

determined by its time index. It is added toH, yielding H̃ = HW★+P
which is then utilized to generate temporal attention matrix A★

ℎ′ ,
where ℎ′ ∈ {1, ..., 𝐻 ′} and 𝐻 ′ represents the number of heads.
Here, each element 𝐴★

𝑖, 𝑗,ℎ′ captures the interrelationship of node
embeddings between time step 𝑖 and 𝑗 :

A★
ℎ′ = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (

(H̃W★
𝑞 ) (H̃W★

𝑘
)⊤√︃

𝑑★
𝑘

+M∞★) (8)

S = H + [A★
1 (H̃W

★
𝑣 ), ...,A★

𝐻 (HW★
𝑣 )]W★

𝑜 (9)

Recognizing that embeddings from future time steps cannot be
foreseen in the past, we address this by applying a mask matrix
M∞★ to mitigate such issues. For each element 𝑀★

𝑖 𝑗
, if time step

𝑖 is ahead of 𝑗 , then it is set to negative infinite to guarantee the
softmax result is 0; otherwise it is set to 0. Additionally, We employ
multiple heads in temporal attention, concatenating their outputs

to obtain S ∈ R𝑘×𝑑∗
, the final output embeddings from Temporal

Module.

4.4 Node-level Prediction Task
Our task is to forecast the excess return for each node in the subse-
quent future time step. For each asset 𝑢, we derive the embeddings
S𝑢 = (S𝑡−𝑘𝑢 , ..., S𝑡𝑢 ) after undergoing temporal attention. To ob-
tain the node-level prediction, we extract the embedding vector
S𝑡𝑢 ∈ R𝑑∗

at the final time step 𝑡 which wraps all structural infor-
mation from related assets and historical patterns. A multi-layer
perceptron (MLP) layer and tanh activation function are then ap-
plied to generate𝑦𝑢 in the range of (-1,1), representing the predicted
excess return for asset 𝑢 on the time step 𝑡 + 1.

To exclude non-existing nodes from consideration, we incorpo-
rate a mask 𝑀 (𝑃 ) into both target and predictions for all shared
assets. This mask is assigned a value of 1 if asset 𝑢 exists for both
time steps 𝑡 + 1 and 𝑡 . This criterion ensures that for predicting
future returns, the asset must exist in the future time step and at
least one historical data point immediately preceding it available;
otherwise, the mask is set to 0. For optimization, we adopt Mean
Square Error Loss as our objective function.

𝑦𝑢 = 𝑀 (𝑃 ) · 𝑦𝑢 , 𝑦𝑢 = 𝑡𝑎𝑛ℎ(𝑀𝐿𝑃 (Su)) (10)

L =
∑︁
𝑢∈V

(𝑦𝑢 −𝑀 (𝑃 ) · 𝑦𝑢 )2 (11)

5 Experiment
To comprehensively evaluate our proposed model and the effec-
tiveness of node representations learned from dynamic graphs, we
raise four research questions and conduct experiments from the
following perspectives.

• RQ1: Does DySTAGE effectively learn dynamic graphs com-
pared with other available dynamic and static approaches
regarding asset return prediction?

• RQ2: Can the model generate positive portfolio return in real-
world scenarios?

• RQ3: Does graph representation learned from DySTAGE ef-
fectively reflect asset patterns?

• RQ4: What is the contribution of each component in DyS-
TAGE?

5.1 Dataset
In this study, we utilize three dynamic asset graph datasets, each
sampled at different frequencies — monthly and daily — to assess
our model’s performance with dynamic graphs.

(1) Russell 3000 Monthly Dataset [3] includes monthly data
for all Russell 3000 index constituents. The data provides
security monthly returns for all index constituents, with
166 firm-specific characteristics that previously identified
as proven predictors for future return. This includes vari-
ables related to firm size, profitability, accruals, momentum,
earnings surprises, intangibles, and trading frictions.

(2) MLFI Monthly Dataset is publicly available from Machine
Learning for Factor Investing (MLFI) [7], including 1,207 U.S.-
listed stocks, with 990 stocks retained after data cleaning. It
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Table 1: Summary of Statistics for Dynamic Asset Graph Datasets.

Dataset # Snapshots # Nodes # Edges # Features Lag Horizon Frequency Range
Russell 3000 193 2,151 1,290K 166 12 1 Monthly Jan 2000 - Dec 2021
MLFI 172 990 387K 93 12 1 Monthly Jan 2000 - Mar 2019
S&P 500 2,396 460 123K 24 20 1 Daily Jan 3, 2011 - Dec 31, 2020

Table 2: Comparison results from benchmarks and our model. MAPE results are in the form of percentages (%).

Type Model Russell 3000 MLFI S&P 500
RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE

Time Series ARIMA 0.1798 0.1422 117.8364 0.1254 0.0970 87.0359 0.0223 0.0178 17.8370
N-Beats 0.1327 0.1050 83.8827 0.1005 0.0793 69.7604 0.0195 0.0158 15.8619

Static GNN

GAT 0.1073 0.0874 66.3047 0.0802 0.0651 55.6068 0.0154 0.0131 13.1286
GraphSAGE 0.1060 0.0864 65.4026 0.0811 0.0656 56.0802 0.0156 0.0131 13.1464
ARMAConv 0.1081 0.0877 66.2636 0.0808 0.0653 55.8012 0.0158 0.0133 13.2557

UniMP 0.1078 0.0853 64.1338 0.1078 0.0853 64.1331 0.0156 0.0134 13.3536

Dynamic GNN

DySAT 0.1039 0.0840 63.2542 0.0806 0.0652 55.7200 0.0155 0.0132 13.2118
DY-GAP 0.1357 0.1089 87.7335 0.0806 0.0652 55.7378 0.0155 0.0131 13.0723
T-GCN 0.1078 0.0882 67.0031 0.0813 0.0657 56.0604 0.0168 0.0145 14.5104

EvolveGCN 0.1064 0.0845 63.5845 0.0806 0.0651 55.5625 0.0155 0.0132 13.1989
GCLSTM 0.1033 0.0839 62.9582 0.0807 0.0650 55.5467 0.0156 0.0134 13.4025
DyTed 0.1040 0.0844 63.3368 0.0800 0.0647 55.3379 0.0155 0.0132 13.1666
DGIB 0.1031 0.0837 62.8114 0.0802 0.0649 55.4483 0.0154 0.0131 13.0751

DySTAGE 0.1026 0.0833 62.5027 0.0797 0.0644 54.9632 0.0154 0.0131 13.0602

has 93 features on crucial company fundamentals such as fi-
nancial ratios, cash flowmetrics, and performance indicators.
It also incorporates liquidity data and market capitalization
figures.

(3) S&P 500 Daily Dataset covers daily market performance of
460 stocks from 2011 to 2020, providing detailed data on price
movements and trading volumes. It enables the examination
of short-term market dynamics and investor behaviors by
tracking daily trends, patterns, and potential trading signals
through fluctuations in stock prices, volumes, and volatility
indicators.

Table 3: Descriptive statistics for selected asset pricing fea-
tures, exret_rf denotes the excess return which is the target.

Feature Mean STD Min Max
exret_rf 0.009 0.163 -0.995 24.00
VolSD -4.548 35.52 -6121 -0.000
VolumeTrend -0.006 0.020 -0.065 0.056
Accruals -0.009 0.108 -6.265 5.750
Beta 0.974 0.716 -7.747 52.64
AbnormalAccruals -0.002 0.135 -2.218 6.909
zerotrade 1.229 3.008 0.000 19.85
Activism1 14.88 49.00 6.000 23.00
VolMkt -0.155 1.792 -1330 0.000
VarCF -0.887 55.77 -20078 0.000

The dynamic evolution of assets varies across all datasets: over
30% of asset change in Russell 3000, and over 20% in MLFI. While

assets in S&P remain constant, the graphs still retain dynamism
due to changing edge correlations. For all datasets, we use monthly
(daily) excess returns after the risk-free rate as the target. The stock
returns data are sourced from CRSP, while the fundamental vari-
ables come from Compustat. Each dataset offers unique variables
suitable for the intended frequency and type of analysis. Detailed
data descriptions are provided in Table 1. and selected feature sta-
tistics in Table 3. Datasets are split along the temporal dimension
into training, validation, and test sets, in a 70%:15%:15% ratio, with
testing periods of 2020/01 - 2021/12, 2017/01 - 2019/03, and 2019/08
- 2020/12, respectively. Additionally, features are normalized to the
range of (−1, 1).

5.2 Baselines
We compare DySTAGE against a variety of traditional and state-of-
the-art time series and GNN models. Our return prediction bench-
marks are categorized into three main types:

(1) Time series models: ARIMA [20] is a traditional finan-
cial forecasting model, and N-Beats [23] is a neural basis
expansion model for interpretable time series forecasting.

(2) Static GNN approaches: Among static GNNmodels, we em-
ploy GAT [33], GraphSAGE [14], ARMAConv [2], and UniMP
[29]. These models differ in their approaches to aggregating
network information. For instance, GAT and GraphSAGE
aggregate neighboring embeddings, ARMAConv leverages
recurrent neural networks (RNNs), while UniMP utilizes a
self-attention mechanism. These models handle only static
graphs and cannot deal with temporal patterns. Hence, we
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utilize the latest historical graph as input with all historical
features as node features.

(3) Dynamic GNN models: Our selection includes RNN-based
models such as T-GCN [42], EvolveGCN [24], and GCLSTM
[4], as well as attention-based models DY-GAP [30] for asset
pricing and DySAT [27] utilizing self-attention to learn node
representations. We also include two state-of-the-art models,
DyTed [41] in contrastive learning framework, and DGIB
[40] for robust representations.

5.3 Implementation Details
DySTAGE is implemented in PyTorch. Hyperparameters are tuned
on the validation set. The window size for Pearson correlation𝑤

is 36 and 61, representing 3 years and 3 months, and the historical
time step 𝑇 is set to 12 and 20 for monthly and daily datasets
respectively. The threshold of correlation 𝛾 for graph construction
and adjacency matrix is 0.3. We employ the AdamW optimizer for
training, running for up to 300 epochs with early stopping after 30
epochs. The learning rate is 0.0001. Both modules use 16 heads and a
concatenated hidden dimension of 128. For other baselines, we fine-
tune the hyperparameters based on optimal values reported in their
studies and choose the best-performing model for implementation.

5.4 Comparison of Baselines (RQ1)
We implement DySTAGE and benchmarks on all monthly and daily
datasets. As per common practice, model performance is evaluated
using three metrics: Root Mean Absolute Error (RMSE), Mean Ab-
solute Error (MAE), and Mean Absolute Percentage Error (MAPE).
Table 2 presents the numerical results, and we draw the following
observations. (1) DySTAGE stands out as the most reliable and ac-
curate model across diverse datasets, consistently surpassing time
series models, static GNNs, and dynamic benchmarks across all
evaluation metrics, especially regarding MAPE. It achieves impres-
sive MAPE of 62.50% and 54.96% on Russell andMLFI, and 13.06% on
S&P daily assets. (2) Time series models fall short in performance as
they rely solely on a historical series of excess returns, disregarding
other fundamental features and failing to capture the intricate rela-
tionship between assets in the financial networks. (3) Among static
GNNs, UniMP and GAT demonstrate superior performance in terms
of MAPE. Nevertheless, static GNNs generally falls behind dynamic
counterparts across multiple datasets, primarily due to their lack
of temporal dependencies and exclusive focus on fixed topological
information. (4) In dynamic GNNs, other than DySTAGE, DyTed
and DGIB emerge as the most powerful models for two monthly
datasets, while DY-GAP achieves the lowest errors on S&P daily
data. This suggests the superiority of dynamic models in capturing
inherent variations in stock market data. DySTAGE outperforms
other dynamic GNNS due to its enhanced structural attention and
graph encodings. (5) Notably, all models exhibit better performance
on daily S&P data compared with two monthly datasets. This can
be attributed to the lower volatility and more predictable patterns
observed in daily prices, facilitating more accurate predictions due
to smoother and more consistent trends. Therefore, the difference
in performance among models on S&P data is smaller compared to
monthly data, yet DySTAGE maintains its superior performance in
terms of MAPE.

5.5 Portfolio Management (RQ2)
To demonstrate how DySTAGE provides insights for investors and
generate profits, we utilize our prediction results to construct port-
folios from the dynamic asset pool and observe the returns. We
conduct portfolio management on GNNs only due to their com-
parable performance. At the beginning of each period, we invest
long positions in the top 10% assets with highest predicted excess
returns and assign them equal weight, then liquidate them at the
end of the period. The portfolio performance is evaluated by the
following metrics:

(1) Cumulative Return (CR) is the total return achieved over
testing period.

(2) Annual Return (AR) is the percentage change of equity
over 1-year period.

(3) Sharpe Ratio (SR) is a risk-adjusted metric to calculate the
excess return relative to its risk. A higher value indicates a
more favorable strategy.

The numerical results are shown in the table 4. (1) DySTAGE
consistently generates the highest profits, achieving cumulative
returns of 50% on Russell, 10% on MLFI, and 31% on S&P. This
demonstrates DySTAGE’s ability to offer lucrative investment rec-
ommendations in real-world scenarios. (2) DySTAGE achieves a
Sharpe Ratio exceeding 1 on S&P. Although GraphSAGE exhibits
the highest Sharpe ratios on Russell, DySTAGE maintains a compet-
itive Sharpe ratio close to 1.2, indicating a strong balanced between
profitability and risk management. (3) N-Beats is competitive in
portfolio management but weak in prediction performance. This
may be because it learns parameters for each asset series individu-
ally, which leads to less accurate predictions, but top-return assets
can be identified and fall into the leading 10% group. (4) Portfolio
performance on MLFI is generally poorer due to higher volatility
compared to the other datasets. DY-GAP and GAT show robustness
during volatility periods but carry higher associated risk compared
with DySTAGE. Conversely, GraphSAGE and DySAT perform well
during the recovery period marked by an upward trend but struggle
more with volatility. It is worth noting that DySTAGE showcases
stability across all test periods.

5.6 Graph Learning (RQ3)
Figure 3 illustrates DySTAGE’s capability to accurately capture and
represent temporal dynamics within financial markets. The top
panel, which depicts the absolute return differences between two
selected stocks over ten months, establishes a baseline for financial
performance fluctuations between these assets. The bottom panel,
a t-SNE visualization of the DySTAGE’s node embeddings, shows
the relative positioning of these two stocks within the market’s
broader context at critical timestamps. Notably, the distance be-
tween the two stocks in this embedding space is consistent with
observed absolute return differences, suggesting that the spatial
distribution in model’s embeddings effectively mirrors the actual
financial performance disparities. This consistency supports the
conclusion that DySTAGE exhibits robust graph representational
learning capabilities. By effectively mapping the temporal changes
and maintaining fidelity to the ground truth, the model demon-
strates its potential utility for predictive analytics in finance. The
accuracy of these embeddings in reflecting true market behavior
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Table 4: Portfolio management results on the three datasets. CR and AR are in the format of percentage (%).

Type Model Russell 3000 MLFI S&P 500
CR(%) ↑ AR(%) ↑ SR ↑ CR(%) ↑ AR(%) ↑ SR ↑ CR(%) ↑ AR(%) ↑ SR ↑

Time Series ARIMA 42.1388 20.1368 1.0047 0.9074 0.5435 0.1198 17.6767 12.1484 0.7275
N-Beats 49.5191 23.3519 1.1667 9.2134 5.0084 0.4069 25.9006 18.0936 1.0282

Static GNN

GAT 42.7684 20.4142 1.1837 8.0401 4.7492 0.3549 10.5096 7.4825 0.5219
GraphSAGE 49.8937 23.5131 1.2077 -0.7568 -0.4547 0.0483 24.5304 17.1641 0.9445
ARMAConv 25.7004 12.6751 0.7184 -0.5407 -0.3247 0.0675 14.1315 10.0146 0.6152

UniMP 40.0290 19.2031 1.0231 5.8182 3.4514 0.2748 15.6653 1.0802 0.7083

Dynamic GNN

DySAT 37.9606 18.2812 1.0156 -0.3293 -0.1977 0.0808 23.3353 16.3512 0.9530
DY-GAP 40.8272 19.5572 1.1609 9.8075 5.7740 0.4285 19.0134 13.3927 0.8330
T-GCN 35.7086 17.2698 0.9543 7.6595 4.5486 0.3626 6.0337 4.3211 0.3410

EvolveGCN 29.7708 14.5642 0.8721 2.2540 1.3464 0.1611 5.1677 3.7051 0.2837
GCLSTM 41.9357 20.4726 1.0616 -3.2744 -1.9777 -0.0330 8.0919 5.7793 0.4216
DyTed 40.1514 19.2575 0.9667 -0.7692 -0.4622 0.0643 9.4853 6.5678 0.5208
DGIB 29.2723 14.3344 0.9369 6.1102 3.6226 0.3047 8.5284 6.0876 0.4149

DySTAGE 50.3428 23.7152 1.1975 10.2829 6.0486 0.4614 31.5506 21.8969 1.2945

Figure 3: Similarity comparison between node embeddings from DySTAGE and ground truth.

Table 5: Ablation study results in terms of MAPE.

Model Russell MLFI S&P
w/o Importance 62.7537 55.3018 13.0674
w/o Temporal 62.6115 55.0411 13.1801
w/o Spatial 62.5868 54.8906 13.0734
w/o Edge 62.5943 54.9654 13.0690
DySTAGE 62.5027 54.9632 13.0602

highlights the effectiveness of DySTAGE as a powerful tool for
financial analysis and decision-making.

5.7 Ablation Study (RQ4)
To quantify the improvement from each component, we imple-
ment the following variants of DySTAGE to examine the impact of
removing each component:

• DySTAGE w/o Importance removes Asset-wise Impor-
tance Encoding

• DySTAGEw/o Spatial removes Pair-wise Spatial Encodings
• DySTAGE w/o Edge removes Edge-wise Correlation En-
codings

• DySTAGE w/o Temporal replaces the Temporal module
with a simple MLP layer

From Table 5, it is obvious that the temporal module significantly
boosts the performance, especially a decrease of 0.11% on Russell
and 0.12% on S&P in MAPE. Moreover, it demonstrates that DyS-
TAGE equipped solely with the Topological Module is remarkably
powerful, outperforming almost all benchmarks. In addition, all
graph encodings consistently contribute to the model performance.
Among them, Asset-wise Importance Encoding proves to be the most
influential, especially on monthly data. Removing it leads to a 0.25%
increase in Russell and a 0.34% in MLFI. Additionally, Pair-wise Spa-
tial Encoding effectively improves MAPE of DySTAGE by revealing
hidden connections between asset pairs.
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6 Conclusion
This paper addresses a critical gap in the existing asset pricing litera-
ture. While prior research focuses on learning the interrelationships
among assets within financial networks, it often overlooks how
asset composition and relationships change over time. To bridge
this gap, we introduce DySTAGE, a novel framework for dynamic
graph representation learning in asset pricing from two aspects:
the first universal formulation from asset time series to dynamic
graphs accomodating changes in asset composition and relation-
ships, and a graph learning model enriched with spatio-temporal
and graph encodings with financial insights to capture the evolving
nature of financial networks over time. Extensive experiments on
monthly and daily assets demonstrate that DySTAGE outperforms
popular benchmarks in price prediction and offers valuable insights
for profitable investment strategies in real-world scenarios.

Future researchmay enhanceDySTAGE’s dynamic feature-capturing
capabilities by integrating multimodal data, such as news sentiment
and economic indicators, for richer market context. Additionally,
incorporating advanced techniques, including graph generative ad-
versarial networks and Large Language Models, could improve the
model’s adaptability, predictive precision, and and interpretability
in response to evolving market structures.
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