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Abstract

The mathematical capabilities of AI systems are complex and
multifaceted. Most existing research has predominantly fo-
cused on the correctness of AI-generated solutions to math-
ematical problems. In this work, we argue that beyond pro-
ducing correct answers, AI systems should also be capa-
ble of, or assist humans in, developing novel solutions to
mathematical challenges. This study explores the creative po-
tential of Large Language Models (LLMs) in mathematical
reasoning, an aspect that has received limited attention in
prior research. We introduce a novel framework and bench-
mark, CREATIVEMATH, which encompasses problems rang-
ing from middle school curricula to Olympic-level compe-
titions, designed to assess LLMs’ ability to propose innova-
tive solutions after some known solutions have been provided.
Our experiments demonstrate that, while LLMs perform well
on standard mathematical tasks, their capacity for creative
problem-solving varies considerably. Notably, the Gemini-
1.5-Pro model outperformed other LLMs in generating novel
solutions. This research opens a new frontier in evaluating AI
creativity, shedding light on both the strengths and limitations
of LLMs in fostering mathematical innovation, and setting
the stage for future developments in AI-assisted mathemati-
cal discovery.

Code — https://github.com/NJIT-AI-Center/CreativeMath

Introduction
In recent years, artificial intelligence has made significant
strides, particularly in the development of Large Language
Models (LLMs) capable of tackling complex problem-
solving tasks. Models like GPT-4 and Gemini-1.5-Pro have
demonstrated impressive proficiency on rigorous mathemat-
ical benchmarks (Ahn et al. 2024) such as GSM8K (Cobbe
et al. 2021) and MATH (Hendrycks et al. 2021a), underscor-
ing the evolving role of LLMs from simple text generators
to sophisticated tools capable of engaging with high-level
mathematical challenges. Beyond solving student-oriented
math problems, leading mathematicians have begun explor-
ing the use of LLMs to assist in tackling unresolved mathe-
matical challenges (Romera-Paredes et al. 2024; Trinh et al.
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2024). Despite these models’ success in achieving high ac-
curacy on existing mathematical datasets, their potential for
creative problem-solving remains largely underexplored.

The standard definition of creativity, as articulated by
(Runco and Jaeger 2012), emphasizes two essential crite-
ria: novelty and usefulness. While correctness aligns with
usefulness, evaluating novelty remains a challenge, espe-
cially in the domain of mathematics. Mathematical cre-
ativity goes beyond solving problems correctly; it involves
generating novel solutions, applying unconventional tech-
niques, and offering deep insights—areas traditionally as-
sociated with human ingenuity. Yet, most studies have fo-
cused primarily on correctness and efficiency, paying little
attention to the innovative approaches LLMs might employ.
Furthermore, creativity in mathematical problem-solving is
rarely integrated into existing benchmarks, limiting our un-
derstanding of LLMs’ full potential. The current research
landscape lacks a comprehensive framework that evaluates
both the accuracy and the creative capacity of LLMs. This
gap highlights the need for new methodologies and bench-
marks specifically designed to assess and cultivate the cre-
ative problem-solving abilities of LLMs in mathematics,
which is the focus of this paper.

We created the dataset CREATIVEMATH, a comprehen-
sive math benchmark that includes problems from middle
school to Olympic-level competitions, each accompanied by
multiple high-quality solutions ranging from straightforward
to highly innovative approaches. Additionally, we designed
a multi-stage framework to rigorously evaluate the creativ-
ity of LLMs in generating novel math solutions. This evalua-
tion spans closed-source, open-source, and math-specialized
LLMs, assessing both the correctness and novelty of their
solutions based on different reference prior solutions.

Our evaluation revealed several interesting key insights:
(1) Gemini-1.5-Pro excelled in generating unique solutions,
with most correct answers being distinct from the pro-
vided references, while smaller and math-specialized mod-
els struggled with novelty. (2) Providing more reference so-
lutions generally improved accuracy, with Gemini-1.5-Pro
achieving perfect accuracy with four prior solutions. How-
ever, increased references made it harder for models to gen-
erate unique solutions, indicating a trade-off between lever-
aging existing knowledge and fostering creativity. (3) As
math problem difficulty increased, LLM accuracy declined,



but successful solutions were more likely to be innova-
tive, suggesting that tougher problems encourage creativity.
(4) Analysis of solution similarity among different LLMs
showed that models like Llama-3-70B and Yi-1.5-34B ex-
plored diverse approaches, while others like Mixtral-8x22B
produced more similar solutions, highlighting the value of
using a diverse set of LLMs to enhance originality.

This study lays the groundwork for future advancements
in LLM math creativity. The major contributions include:
(1) Introducing a new task—evaluating LLMs’ mathemati-
cal creativity, (2) Creating the CREATIVEMATH dataset, (3)
Developing a framework for assessing mathematical creativ-
ity in LLMs, and (4) Evaluating state-of-the-art LLMs, re-
vealing key insights into their strengths and limitations.

Related Work
LLMs have demonstrated significant advancements in both
mathematical reasoning and creative capabilities, making
them increasingly powerful tools in a variety of domains.
In the realm of mathematical reasoning, techniques such
as prompt engineering, Chain-of-Thought (CoT) prompt-
ing, and program-aided language modeling have notably en-
hanced LLMs’ abilities to solve complex problems (Brown
2020; Wei et al. 2022; Zhou et al. 2023). These approaches
enable models to break down problems into more manage-
able steps, thereby improving their accuracy and reasoning
depth. Moreover, specialized models like MathVerse (Zhang
et al. 2024) and Internlm-Math (Ying et al. 2024), which are
trained on extensive mathematical corpora, have achieved
significant improvements in mathematical problem-solving
performance (Lewkowycz et al. 2022; Ying et al. 2024).
Benchmarks such as GSM8K and MATH further provide a
structured means to evaluate and compare these advance-
ments, highlighting the continuous progress in this area
(Cobbe et al. 2021; Hendrycks et al. 2021b).

In terms of creativity, LLMs have shown remarkable
prowess across diverse fields. They have excelled in gen-
erating high-quality, human-like content, ranging from code
generation (Ni et al. 2023; Liu et al. 2024a) and music com-
position (Yuan et al. 2024) to literature (Gómez-Rodrı́guez
and Williams 2023; Liu et al. 2024b) and educational tools
(Lan and Chen 2024; Orenstrakh et al. 2023). Creativity
in LLMs is often evaluated using frameworks like Mar-
garet Boden’s taxonomy (Boden 2004), which categorizes
creativity into combinational, exploratory, and transforma-
tional types. While LLMs perform well in combinational
creativity, achieving true transformational creativity remains
a significant challenge (Franceschelli and Musolesi 2023).
Psychological metrics such as the Torrance Tests of Cre-
ative Thinking (TTCT) (Torrance 1966), where LLMs have
demonstrated high fluency, originality, and flexibility. How-
ever, the applicability of these traditional creativity metrics
to AI systems is still a topic of debate, as they were origi-
nally designed to assess human creativity (Zhao et al. 2024).

Techniques such as associative thinking have been em-
ployed to enhance the creative output of LLMs further, al-
though challenges remain in ensuring that these models can
meaningfully integrate unrelated concepts (Mehrotra, Parab,

and Gulwani 2024). The ethical and legal implications of AI-
generated creativity continue to be a significant area of con-
cern, underscoring the need for ongoing research to refine
evaluation methods and address societal impacts (Lofstead
2023).

CREATIVEMATH Curation
This section details the creation, collection, and processing
of our dataset CreativeMath, which comprises high-quality
mathematical problems from various competitions and their
numerous solutions. The dataset is diverse, encompassing
a broad range of mathematical topics and problem types,
and covers difficulty levels from middle school to Olympiad
level. It includes problems from eight major US competi-
tions: AMC 8, AMC 10, AMC 12, AHSME, AIME, US-
AJMO, USAMO, and IMO1.

Data Collection. The dataset was sourced from the Art
of Problem Solving (AoPS)2, a platform offering the most
comprehensive collection of problems from various math
competitions, along with multiple solutions contributed by
participants over the years. As the most popular and sought-
after resource for math competitors, AoPS effectively func-
tions as a natural crowdsourcing platform. It uniquely ap-
proximates the complete set of viable human solutions for
each problem, with later contributors often building on ear-
lier ones.

We meticulously scraped data from eight competitions,
ranging from middle school level to Olympic-level, to cap-
ture the breadth of mathematical challenges and the depth of
solution strategies available.

Data Cleaning. To ensure the integrity and reliability of
the dataset, we conducted a rigorous data cleaning proce-
dure. We accurately extracted LaTeX-formatted problems
and solutions from HTML, ensuring their correct representa-
tion. Irrelevant comments were removed to make each prob-
lem and solution clear and self-sufficient. Samples with im-
ages, problems without solutions, or incomplete entries were
manually removed from the dataset. After this process, the
dataset comprises 6,469 mathematical problems and 14,223
solutions. Each problem in the dataset is tagged with de-
tailed metadata, including difficulty level, math category,
and problem type. Difficulty levels and problem types were
assigned based on official competition data, while the math
category were determined using the Llama-3-70B model.

Dataset Analysis. As shown in Figure 1, the problem dis-
tribution inside CreativeMath reveals that Algebra and Ge-
ometry are the most represented categories across all com-

1AMC 8: American Mathematics Competition for grade 8 and
below, AMC 10: American Mathematics Competition for grade
10 and below, AMC 12: American Mathematics Competition for
grade 12 and below, AHSME: American High School Mathemat-
ics Examination, AIME: American Invitational Mathematics Ex-
amination, USAJMO: USA Junior Mathematical Olympiad, US-
AMO: USA Mathematical Olympiad, IMO: International Mathe-
matical Olympiad.

2Art of Problem Solving. “AoPS Wiki”, https:
//artofproblemsolving.com/wiki/.



Figure 1: Distribution of problems across different math cat-
egories and competitions in the CreativeMath dataset.

Figure 2: Distribution of the number of solutions per prob-
lem across different competitions.

petitions. The number of solutions across different competi-
tions, as depicted in Figure 2, reflects the varying complex-
ity of the problems. Medium-difficulty competitions like
AMC 10, AMC 12, and AIME typically have a larger num-
ber of solutions, as these problems allow for a variety of
approaches. In contrast, simpler competitions like AMC 8
tend to have fewer solutions due to the straightforward na-
ture of the problems, which often have limited methods of
solving. Olympic-level competitions such as USAJMO, US-
AMO, and IMO also see fewer solutions, likely due to the
high complexity of the problems, which limits the number
of viable solving strategies.

Methods
Our approach consists of a multi-stage pipeline designed
to evaluate the novelty of mathematical solutions gen-
erated by an LLM. The methodology is structured into
four key stages: Novel Solution Generation, Correctness
Evaluation, Coarse-Grained Novelty Assessment, and Fine-
Grained Novelty Assessment. This comprehensive pipeline

illustrated in Figure 3 ensures that the generated solutions
are not only correct but also exhibit a meaningful degree
of novelty relative to the reference solutions. The sample
prompts and LLMs’ responses are provided in the Appendix.

Novel Solution Generation
The first stage of the methodology aims to generate novel
solutions for the given mathematical problem using LLM.
For each problem, a subset of k reference solutions (where
k ranges from 1 to n, with n representing the total number of
available reference solutions) is sequentially selected based
on the order in which competitors uploaded their solutions
on the website. Earlier solutions are often the most common
and intuitive, while later ones may build on previous meth-
ods, offer improvements, or introduce entirely novel algo-
rithms. Consequently, as k increases, the difficulty in gener-
ating new and innovative solutions also increases.

To ensure clarity and consistency in both prompting and
evaluating the novelty of generated solutions, we define a set
of criteria agreed upon in consultation with several mathe-
maticians. These criteria guide both the generation and the
evaluation process and are used to assess the distinctiveness
of the solutions. The criteria are as follows:

• Methodological Differences: If the methods used to
arrive at the solutions are fundamentally different (e.g., al-
gebraic manipulation versus geometric reasoning), the solu-
tions are considered distinct.

• Intermediate Step Variation: Even if the final re-
sults are identical, if the intermediate steps or processes in-
volved in reaching those solutions differ significantly, the
solutions are considered novel.

• Assumptions and Conditions: Solutions that rely on
different assumptions, initial conditions, or constraints are
treated as distinct.

• Generalization: A solution that generalizes to a
broader class of problems is considered novel compared to
one that is specific to certain conditions.

• Complexity: If one solution is notably simpler or
more complex than another, they are regarded as different,
even if they lead to the same final result.

These criteria, also illustrated in Figure 4, are embedded
into the prompt used to guide the LLM in generating novel
solutions. The reference solutions provided to the model aim
to capture a variety of approaches, and the LLM is instructed
to output a new solution that is distinct according to the de-
fined criteria. The prompt emphasizes generating solutions
that use different problem-solving methods, distinct inter-
mediate steps, and variations in assumptions or generaliz-
ability.

As part of this process, to avoid influencing the judgment
of evaluators during the subsequent evaluation stage, transi-
tion sentences and justifications explaining why the new so-
lution is distinct from the reference solutions are manually
removed. Only the newly generated solution is presented for
evaluation.

Correctness and Novelty Evaluation
To rigorously evaluate the correctness and novelty of the
generated solutions, we employ three leading LLMs—GPT-



Figure 3: The framework includes solution generation (left) and the evaluation pipeline (middle). The flowchart of the detailed
evaluation pipeline is illustrated on the right.

Figure 4: The prompt template for generating novel solution.

4, Claude 3.5 Sonnet, and Gemini 1.5 Pro—as LLM Eval-
uators, recognized among the strongest models available.
These LLM Evaluators collaboratively assess the solutions
following the framework illustrated in Figure 3 (middle).
Each LLM Evaluator adheres to the flowchart depicted in
Figure 3 (right) to systematically evaluate the generated so-
lutions across three dimensions:

• Correctness: The solution must first be validated for cor-
rectness, ensuring it produces the correct result for the
problem. Only correct solutions proceed to the novelty

assessment stages.

• Coarse-Grained Novelty: If the solution is correct, it is
then evaluated for novelty against a subset of k reference
solutions. A solution is deemed novel if it is distinct from
these k solutions.

• Fine-Grained Novelty: A solution deemed novel in the
coarse-grained assessment undergoes further evaluation
against the entire set of n human-provided solutions. This
stage distinguishes between:

– Novel-Unknown: A solution that is distinct from all n
human-generated solutions, representing a truly origi-
nal contribution.

– Novel-Known: A solution that is distinct from the k
reference solutions but similar to others in the remain-
ing n− k solutions.

Evaluation Strategy We apply different strategies for cor-
rectness and novelty evaluation to ensure both rigor and
practicality. For correctness, only solutions unanimously
deemed correct by all LLM Evaluators proceed to the nov-
elty assessment, ensuring that only fully reliable solutions
are considered. Given the subjective nature of assessing nov-
elty, we use a majority voting strategy, which balances di-
verse perspectives and effectively identifies genuinely inno-
vative solutions without being overly restrictive.

Correctness Evaluation Once a solution is generated, the
first essential step is to verify its correctness. The newly gen-
erated solution, along with the original problem and a set of
reference solutions, is evaluated by the LLM Evaluators us-
ing the prompt shown in Figure 5, top. The LLM Evaluators
determine if the solution leads to the correct outcome, with
responses of “YES” indicating correctness and “NO” indi-
cating otherwise. Only solutions unanimously validated as
correct by all LLM Evaluators advance to the novelty as-
sessment stages.



Figure 5: The prompt templates for evaluating the correct-
ness (top) and novelty (bottom) of the generated solution.
The criteria for evaluating the novelty are rephrased from
the same criteria applied during the novel solution genera-
tion process to ensure alignment.

Coarse-Grained Novelty Assessment After correctness
is established, the next step is to evaluate the solution’s nov-
elty at a coarse level. This involves comparing the gener-
ated solution against the k reference solutions. The LLM
Evaluators assess whether the solution employs distinct ap-
proaches or methods that differentiate it from the provided
references, using the prompt (Figure 5, bottom). If the solu-
tion is considered novel relative to the k reference solutions,
it is marked as “YES” and proceeds to the fine-grained nov-
elty assessment.

Fine-Grained Novelty Assessment In the final stage,
the solution undergoes a fine-grained novelty evaluation to
determine its originality in comparison to all n human-
generated solutions. This assessment uses the same prompt
as the coarse-grained novelty assessment but changes the
reference solutions from the subset 1 to k to the comple-
mentary set k + 1 to n. The evaluation focuses on whether
the solution introduces new insights, methods, or approaches
that surpass existing human solutions in terms of innovation,
complexity, or generalizability. The outcome categorizes the
solution as either a unique contribution or as similar to ex-
isting human-generated solutions.

Experiment
In this section, we conduct extensive experiments and analy-
ses to show the performance of ten the-state-of-the-art LLMs
in math problem solving. We also address several research
questions.

Dataset
We selected a subset from our CreativeMath dataset for this
study. For each competition, 50 samples were randomly cho-
sen to ensure a representative evaluation of the LLMs’ per-
formance. The datasets were meticulously curated to ensure
that when the problem and all reference solutions were in-
cluded in the novel solution generation prompt, the total to-
ken count did not exceed 3K tokens. This approach allowed
for 1K tokens to be reserved for generation, accommodat-
ing the token limits of models like DeepSeek-Math-7B-RL,
which has a 4K-token capacity. In total, the dataset com-
prises 400 math problems and 605 solutions, forming 605
distinct samples with k varying from 1 to 5.

Large Language Models
In this study, we explore the ability of various LLMs to gen-
erate novel and creative solutions in mathematical problem-
solving. The LLMs selected for this research have demon-
strated superior performance on key mathematical bench-
marks, such as GSM8K and the MATH dataset, outper-
forming other models of similar parameter scale. We in-
clude three leading close-sourced models—GPT-4o (Ver-
sion 2024-05-13) (OpenAI 2024), Claude-3-Opus (Version
2024-02-29) (Anthropic 2024), and Gemini-1.5-Pro (Reid
et al. 2024)—which are renowned for their excellence in
complex mathematical reasoning. To ensure a comprehen-
sive evaluation, we also incorporate five top-ranking open-
source instruction-tuned LLMs in math reasoning: Llama-
3-70B (Meta AI 2024), Qwen1.5-72B (Bai et al. 2023),
Yi-1.5-34B (Young et al. 2024), Mixtral-8x22B-v0.1 (Mis-
tral AI 2024), and DeepSeek-V2 (DeepSeek-AI 2024). Fur-
thermore, two specialized mathematical instruction LLMs,
DeepSeek-Math-7B-RL (Shao et al. 2024) and Internlm2-
Math-20B (Ying et al. 2024), are included for their advanced
capabilities in mathematical reasoning. By selecting these
models, we aim to gain a comprehensive understanding of
whether their demonstrated excellence in math benchmarks
also reflects an enhanced capacity for generating novel solu-
tions.

Implementation Details
For the closed-source LLMs and DeepSeek-V2, we utilized
API calls provided by their respective platforms. Open-
source LLMs were run using the Hugging Face library on
one to four NVIDIA A100 (80G) GPUs, depending on the
model’s memory requirements. To ensure reproducibility,
all experiments were conducted using the greedy decoding
strategy, adhering to the recommended settings provided on
the official Hugging Face pages or the models’ respective
papers. The system prompt followed the guidelines outlined
in the models’ documentation, with the maximum number of
new tokens set to 1024. This standardized approach ensures



Symbol Metric Definition
C Correctness Ratio: The proportion of solutions

that are valid and can solve the problem correctly.
N Novelty Ratio: The proportion of solutions that are

both correct and distinct from the provided k refer-
ence solutions.

Nu Novel-Unknown Ratio: The proportion of solu-
tions that are both correct and unique compared to
all known human-produced solutions n.

N/C Novelty-to-Correctness Ratio: The ratio of novel
solutions to all correct solutions.

Nu/N Novel-Unknown-to-Novelty Ratio: The ratio of
Novel-Unknown solutions to all available novel so-
lutions.

Table 1: Evaluation metrics and their definitions.

consistent and reliable evaluation across all models used in
our study.

Evaluation Metrics
To assess the effectiveness of LLMs in generating novel so-
lutions, we define several evaluation metrics, as outlined in
Table 1. These metrics capture key aspects of the solutions,
including correctness, different levels of novelty, and the
relationship between novelty and correctness. Importantly,
novelty is only considered if the solution is correct, and the
Correctness Ratio, Novelty Ratio, and Novel-Unknown Ra-
tio are calculated based on all generated solutions to ensure
a consistent evaluation.

Results & Discussions
We introduce our results in the context of each of our four
research questions and discuss our main findings.

Q1: Given a math problem with n known solutions, and
an LLM provided with the problem along with k of those
solutions, how effectively can the LLM generate a novel
solution?

Analysis of Coarse-Grained Novelty Table 2 demon-
strates the superior performance of Gemini-1.5-Pro across
all evaluated metrics, particularly in its ability to generate
novel solutions. With a Novelty Ratio (N ) of 66.94% and a
Correctness Ratio (C) of 69.92%, Gemini-1.5-Pro not only
generates a high number of correct solutions but also en-
sures that most of these are novel. The model’s Novelty-to-
Correctness Ratio (N/C) of 95.75% indicates that nearly all
correct solutions it produces are distinct from the provided
reference solutions.

Llama-3-70B and Claude-3-Opus also perform well in
terms of N , with Llama-3-70B achieving a noteworthy N/C
of 82.87%. This contrasts sharply with models like GPT-4o,
DeepSeek-V2, and Mixtral-8x22B, which, despite similar
C values, have N/C ratios below 50%. This discrepancy
highlights significant differences in the ability of LLMs to
generate novel solutions, even when their correctness levels
are comparable. Notably, Llama-3-70B outperforms closed-
source models Claude-3-Opus and GPT-4o, suggesting that
open-source LLMs can achieve competitive novelty genera-
tion capabilities.

In contrast, smaller models like Yi-1.5-34B and special-
ized math-tuned models such as Deepseek-Math-7B-RL and
Internlm2-Math-20B exhibit lower C and N/C ratios. This
outcome is consistent with scaling laws (Kaplan et al. 2020),
where large models generally outperform compared to small
ones. The low N/C in these math-specialized models sug-
gests that their fine-tuning for mathematical tasks may limit
their adaptability in generating novel solutions outside of
their specialized domain.

Analysis of Fine-Grained Novelty The high average
Novel-Unknown to Novelty Ratio (Nu/N ) of 95% across
models indicates that the vast majority of novel solutions
generated are distinct from any available human solutions.
This suggests a substantial potential for these models to con-
tribute genuinely original and innovative solutions that ex-
tend beyond the existing human knowledge base. The ability
to produce solutions that are not only correct but also novel,
surpassing human ingenuity, underscores the LLMs’ capac-
ity to explore new solution spaces. This makes them power-
ful tools for advancing fields that demand creative problem-
solving.

Distinctions Between Novel Solution Generation and
Math Problem Solving Novel solution generation and tra-
ditional math problem-solving differ fundamentally in their
structure and evaluation criteria. In traditional math prob-
lem solving, typically using few-shot settings with k = 4
fixed reference examples, the task is to solve a new, unseen
problem with correctness as the sole criterion. The provided
examples consist of different problems and their solutions,
with the solution to the target problem being unknown.

In contrast, novel solution generation involves a fixed
problem where the model is given varying numbers of refer-
ence solutions with 1 ≤ k ≤ n. Here, the solution is known,
and the model must not only solve the problem correctly but
also generate solutions that are distinct from the provided
references. This requirement for distinctiveness adds a layer
of complexity, challenging the model’s ability to innovate
beyond mere correctness.

This distinction is evident in the evaluation metrics. For
example, while GPT-4o achieves a high accuracy of 76.6%
on the MATH benchmark in Table 2, it performs poorly
on novelty metrics, indicating a limited ability to generate
distinct solutions despite its problem-solving accuracy. This
contrast underscores the more stringent demands of novel
solution generation, where models must demonstrate cre-
ativity and innovation in addition to correctness.

Q2: How does the number of provided solutions, k, af-
fect the LLM’s performance in generating new solutions?

Impact of k on Correctness This section examines how
increasing the number of provided reference solutions (k) af-
fects the correctness of generated solutions, as shown in Ta-
ble 3. Across most models, there is a clear trend of improved
correctness with larger k values. For example, Gemini-1.5-
Pro reaches 100% correctness at k = 4, demonstrating its
ability to effectively utilize additional examples. This trend
is consistent with findings in few-shot learning, where more
examples typically lead to better model performance (Brown
2020). Models like Llama-3-70B and DeepSeek-V2 show
moderate improvements with increased k, though the gains



Source Model C (%) ↑ N (%) ↑ N/C (%) ↑ Nu(%) ↑ Nu/N (%) ↑ MATH (%) ↑

Closed-source
Gemini-1.5-Pro 69.92 66.94 95.75 65.45 97.78 67.7 (Reid et al. 2024)
Claude-3-Opus 59.84 44.63 74.59 42.98 96.30 61.0 (Anthropic 2024)
GPT-4o 60.83 30.08 49.46 27.60 91.76 76.6 (OpenAI 2024)

Open-source

Llama-3-70B 58.84 48.76 82.87 46.94 96.27 50.4 (Meta AI 2024)
Qwen1.5-72B 47.44 33.06 69.69 32.40 98.00 41.4 (DeepSeek-AI 2024)
DeepSeek-V2 63.47 30.91 48.70 29.09 94.12 43.6 (DeepSeek-AI 2024)
Yi-1.5-34B 42.98 29.09 67.69 28.43 97.73 50.1 (01-ai 2024)
Mixtral-8x22B 56.03 27.27 48.67 25.62 93.94 41.8 (Mistral AI 2024)
Deepseek-Math-7B-RL 38.35 12.56 32.76 11.57 92.11 51.7 (Shao et al. 2024)
Internlm2-Math-20B 40.17 11.90 29.63 11.07 93.06 37.7 (Ying et al. 2024)

Table 2: Experimental results for various closed-source and open-source LLMs on the MultiMath subset (↑ indicates that
higher is better). The best-performing models in the open-source and closed-source categories for each evaluation metric are
respectively highlighted. MATH column represents the accuracy on MATH datasets with 4-shot (CoT) setting as reported by
the corresponding papers or websites of the LLMs. Refer to Table 1 for detailed definitions of the evaluation metrics used.

Model k = 1 k = 2 k = 3 k = 4

Gemini-1.5-Pro 68.00 70.78 78.57 100
Llama-3-70B 55.00 66.23 64.29 75.00
Claude-3-Opus 55.00 66.88 76.19 75.00
Qwen1.5-72B 43.75 55.19 57.14 37.50
DeepSeek-V2 61.00 66.88 71.32 75.00
GPT-4o 58.25 64.94 66.67 75.00
Yi-1.5-34B 42.75 42.21 47.62 50.00
Mixtral-8x22B 53.50 60.39 64.28 62.50
Deepseek-Math-7B-RL 35.50 40.91 52.38 50.00
Internlm2-Math-20B 38.00 42.21 47.62 62.50

Table 3: Correctness Ratio (C) across different models with
varying numbers of reference solutions (k). Sample sizes for
k = 1 to k = 4 are 400, 154, 42, and 8, respectively.

are less pronounced compared to Gemini-1.5-Pro. In con-
trast, models like Qwen1.5-72B and Yi-1.5-34B show min-
imal increases in correctness, potentially due to variability
introduced by smaller sample sizes at higher k values.

Impact of the Degree of Solution Availability (n − k)
on Novelty The degree of solution availability, denoted by
n−k, represents the gap between the total available solutions
and those provided to the model. A higher n−k means fewer
distinct solutions are given, leaving more room for the model
to explore and innovate. This typically results in fewer con-
straints, facilitating the generation of novel outputs. As k
increases and n−k decreases, the model is exposed to more
reference solutions, tightening the constraints and making it
harder to generate novel solutions. This pattern is evident
in Table 4, where models generally show higher Novelty-
to-Correctness Ratios (N/C) at higher n − k values, with
Gemini-1.5-Pro achieving a perfect N/C at n − k = 2.
However, as n − k decreases, the ability to produce novel
solutions diminishes. This mirrors human problem-solving,
where creativity often diminishes when more examples are
provided, as the model (or individual) must work within
tighter constraints.

Q3: How does the creativity of LLMs vary when solving
math problems of varying difficulty levels?

Model n− k = 2 n− k = 1 n− k = 0

Gemini-1.5-Pro 100 95.92 95.10
Llama-3-70B 87.50 85.26 81.03
Claude-3-Opus 91.67 72.94 73.68
Qwen1.5-72B 85.00 70.15 68.37
DeepSeek-V2 36.00 54.17 47.84
GPT-4o 57.69 53.33 47.35
Yi-1.5-34B 52.38 52.87 46.43
Mixtral-8x22B 33.33 35.48 56.07
Deepseek-Math-7B-RL 27.78 25.86 35.10
Internlm2-Math-20B 15.00 27.69 32.89

Table 4: Novelty-to-Correctness Ratio (N/C) for different
models based on the degree of solution availability (n− k).
Higher values of n − k indicate scenarios with fewer pro-
vided solutions, which are easier for the LLM.

We analyzed the correctness (C) and Novelty-to-
Correctness Ratio (N/C) of all LLMs across competitions
of different difficulty levels, focusing on problems where
k = 1 to ensure consistency. As shown in Table 5, as prob-
lem difficulty increases, the correctness of LLMs consis-
tently decreases, dropping from 71.80% on AMC 8 prob-
lems to around 35% on more challenging competitions like
USAMO and IMO. Conversely, the N/C ratio increases
with difficulty, from 55.39% on easier problems to 83.01%
on the most difficult ones. This suggests that while LLMs
struggle with accuracy on harder problems, they are more
likely to generate novel solutions when they do succeed. The
observed trend indicates a shift in the balance between fa-
miliarity and innovation: as problem difficulty rises, LLMs
are pushed to rely less on familiar strategies and more on
creative problem-solving. This complex interplay between
familiarity and innovation becomes more pronounced with
increasing problem difficulty, leading to a higher likelihood
of novel solutions.

Q4: When different LLMs are given the same math
problem and k solutions, how likely are the new solutions
generated by these LLMs to be identical or distinct? Addi-
tionally, how does the pairwise similarity between the so-



Competition Difficulty k Average C Average N/C

AMC 8 1-1.5 1 71.80 55.39
AMC 10 1-3 1 67.20 59.96
AHSME 1-4 1 65.08 63.11
AMC 12 2-4 1 60.40 54.05
AIME 3-6 1 35.80 55.55
USAJMO 6-7 1 37.00 77.23
USAMO 7-9 1 35.00 83.01
IMO 5.5-10 1 35.60 78.86

Table 5: Average Correctness (C) and Novelty-to-
Correctness Ratio (N/C) for all LLMs when solving
math problems of varying difficulty levels, with k = 1
across all competitions.

Figure 6: Similarity map between the novel solutions gener-
ated by different LLMs.

lutions generated by different LLMs inform us about their
tendencies to produce similar outputs?

To explore the tendency of different LLMs to generate
novel solutions, we first measured pairwise similarity be-
tween the outputs of various models. We conducted an ex-
periment using 17 samples where all included LLMs were
capable of generating novel solutions. Math-specialized
LLMs were excluded due to their low novelty ratios. For
each pair of LLMs, we used the same prompt as in the nov-
elty assessment, but replaced the reference solution with the
solution generated by one LLM and the new solution with
that generated by another LLM. The pairwise similarity was
determined based on whether the solutions were distinct
(“YES”) or similar (“NO”). The similarity score for each
LLM pair was computed as the ratio of similar solutions to
the total number of samples (17).

We applied Multidimensional Scaling (MDS) to the pair-
wise similarity matrix, mapping the LLMs into a two-
dimensional space. As illustrated in Figure 6, the similarity
map reveals a general trend of low similarity between the
novel solutions generated by different LLMs. The most dis-

tinct pair, Llama-3-70B and Yi-1.5-34B, shows only a 6%
similarity, indicating that these models explore vastly dif-
ferent solution spaces. On the other hand, the most simi-
lar pairs—Mixtral-8x22B with GPT-4o and Mixtral-8x22B
with Claude-3-Opus—each show a 47% similarity. Mixtral-
8x22B, positioned centrally in the similarity map, tends to
produce solutions that are slightly more similar to those of
other models. This analysis suggests that leveraging multi-
ple LLMs positioned on the periphery of the similarity map
could be a promising approach to generate diverse novel
solutions. These models, exploring vastly different solution
spaces, are likely to enhance the efficiency and breadth of
problem-solving strategies.

Conclusion
In this study, we introduced the CreativeMath dataset
and developed a comprehensive framework that encom-
passes both the generation of novel solutions by LLMs
and their rigorous evaluation. This framework is designed
to assess the creative potential of LLMs in mathematical
problem-solving, systematically distinguishing between so-
lutions that are merely correct and those that offer genuinely
innovative approaches. Our findings reveal significant vari-
ability in the creative abilities of state-of-the-art LLMs, em-
phasizing the importance of advancing AI systems that not
only solve problems accurately but also contribute original
insights. We encourage future research to delve deeper into
methodologies for uncovering and assessing the creative ca-
pabilities of LLMs, particularly in complex and abstract do-
mains like mathematics.
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